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Books

Books developing group theory by physicists from the perspective of particle physics are

H. F. Jones, Groups, Representations and Physics, 2nd ed., IOP Publishing (1998).

A fairly easy going introduction.

H. Georgi, Lie Algebras in Particle Physics, Perseus Books (1999).

Describes the basics of Lie algebras for classical groups.

J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations, 2nd ed., CUP
(2003).

This is more comprehensive and more mathematically sophisticated, and does not describe
physical applications in any detail.

Z-Q. Ma, Group Theory for Physicists, World Scientific (2007).

Quite comprehensive.

P. Ramond, Group Theory, A Physicists Survey, CUP (2010).

A relatively gentle physics motivated treatment, and includes discussion of finite groups.
A. Zee, Group Theory in a Nutshell for Physicists. Princeton University Press (2016).
Quite lengthy, comprehensive with many physics applications, some nice anecdotal remarks.
P. Cvitanovi¢, Group Theory: Birdtracks, Lie’s and Ezceptional Lie Groups, Princeton Uni-
versity Press (2009), http://birdtracks.eu

Idiosyncratic, but full of material not found elswhere. Great for doing calculations.

The following books contain useful discussions, in chapter 2 of Weinberg there is a proof
of Wigner’s theorem and a discussion of the Poincaré group and its role in field theory,
and chapter 1 of Buchbinder and Kuzenko has an extensive treatment of spinors in four
dimensions.

S. Weinberg, The Quantum Theory of Fields, (vol. 1), CUP (2005).

J. Buchbinder and S. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity, or
a Walk Through Superspace, 2nd ed., Institute of Physics Publishing (1998).

They are many mathematical books with titles containing references to Groups, Represen-
tations, Lie Groups and Lie Algebras. The motivations and language is often very different,
and hard to follow, for those with a traditional theoretical physics background. Particular
books which may be useful are

B.C. Hall, Lie Groups, Lie Algebras, and Representations, Springer (2004), for an earlier
version see arXiv:math-ph/0005032.

This focuses on matrix groups.

More accessible than most

W. Fulton and J. Harris, Representation Theory, Springer (1991).

Historically the following book, first published in German in 1931, was influential in showing
the relevance of group theory to atomic physics in the early days of quantum mechanics. It
introduces anti-unitary representations. For an English translation

E.P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spec-
tra, Academic Press (1959).



Prologue

The following excerpts are from Strange Beauty, by G. Johnson, a biography of Murray
Gell-Mann', the foremost particle physicist of the 1950’s and 1960’s who proposed SU(3)
as a symmetry group for hadrons and later quarks as the fundamental building blocks. It
reflects a time when most theoretical particle physicists were unfamiliar with groups beyond
the rotation group, and perhaps also a propensity for some to invent mathematics as they
went along.

As it happened, SU(2) could also be used to describe the Isopspin symmetry- the group
of abstract ways in which a nucleon can be “rotated” in isospin space to get a neutron or
a proton, or a pion to get negative, positive or neutral versions. These rotations were what
Gell-Mann had been calling currents. The groups were what he had been calling algebras.

He couldn’t believe how much time he had wasted. He had been struggling in the dark
while all these algebras, these groups- these possible classification schemes- had been studied
and tabulated decades ago. All he would have to do was to go to the library and look them

up.

In Paris, as Murray struggled to expand the algebra of the isospin doublet, SU(2), to
embrace all hadrons, he had been playing with a hierarchy of more complex groups, with
four, five, six, seven rotations. He now realized that they had been simply combinations
of the simpler groups U(1) and SU(2). No wonder they hadn’t led to any interesting new
revelations. What he needed was a new, higher symmetry with novel properties. The next
one in Cartan’s catalogue was SU(3), a group that can have eight operators.

Because of the cumbersome way he had been doing the calculations in Paris, Murray
had lost the will to try an algebra so complex and inclusive. He had gone all the way up to
seven and stopped.

"Murray Gell-Mann, 1929-2019, American, Nobel prize 1969.
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0 Notational Conventions

Hopefully we use standard conventions. For any M;;, ¢ belonging to an ordered set with
m elements, not necessarily 1,...m, and similarly j belonging to an ordered set with n
elements, M = [M;;] is the corresponding m x n matrix, with of course i labelling the rows,
j the columns. 1 is the unit matrix, on occasion 1,, denotes the n x n unit matrix.

For any multi-index T;, _;, then T(;, .y, 1];,..i,] denote the symmetric, antisymmetric
parts, obtained by summing over all permutations of the order of the indices in T;, ;, ,
with an additional -1 for odd permutations in the antisymmetric case, and then dividing
by n!. Thus for n =2,

Ttijy = %(Tw +Tji) Tijy = %(ng - Tj;). (0.1)

If some indices are to be omitted from symmetrisation or antisymmetrisation they are
surrounded by |.. .|, thus Ty ;] = %(Tz‘kj —Tjri)-

We use u, v, 0, p as space-time indices, i, j, k are spatial indices while «, 3,y are spinorial
indices.

For a set of elements x then {x : P} denotes the subset satisfying a property P.

A vector space V may be defined in terms of linear combinations of basis vectors {v; },
r=1,...,dimV so that an arbitrary vector can be expressed as }., a,v,. For two vector
spaces V1, Vo with bases {v1,}, {ves} we may define the tensor product space Vi ® Vs in
terms of the basis of pairs of vectors {(v1,,v25)} for all r, s and we require the equivalence
relations (vy + v, v2) ~ (v1,v2) + (V1,v2), (v1,v2 +v%) ~ (vi,v2) + (v1,0%), c(vi,v) ~
(cv1,v9) ~ (v1,cv2) so as to extend the vector space properties from Vi,Vs to Vi ® Vs.
An arbitrary vector in Vi ® Vs is then a linear combination v = Yrs Ors (v1r,v25) so that
dim(V1®Vs) = dimV; dim Vs. The tensor product V®V can be decomposed into symmetric
snd antisymmetric subspaces V2V and A%V with bases (v;.,vs)+ (vs, v,) and (vy, vs) — (vs, ;)
respectively, corresponding to a,s = a5y and ars = app). dim V2y = %dim V(dimV + 1) and
dimA?Y = £ dim V(dim V - 1).

The direct sum V; @ V5 is defined so that if v € V; & V5 then v = v + vo with v; € V;, and
where (v1 +v) + (v2 +0%) = (v1 +v2) + (v +v%) and ¢(vy +v2) = cvy + cve. Equivalently it
has a basis {v1,, v2s} and an arbitrary vector in V; ® V5 has the form v = Y, a, v1, + ¥4 bs vog
so that dim(V; @ V3) = dim V; + dim Vs.



1 Introduction, Definitions and Examples

There are nowadays very few papers in theoretical particle physics which do no not mention
groups or Lie algebras and correspondingly make use of the mathematical language and
notation of group theory, and in particular of that for Lie groups. Groups are relevant
whenever there is a symmetry of a physical system, symmetry transformations correspond
to elements of a group and the combination of one symmetry transformation followed by
another corresponds to group multiplication. Associated with any group there are sets
of matrices which are in one to one correspondence with each element of the group and
which obey the same the same multiplication rules. Such a set a of matrices is called a
representation of the group. An important mathematical problem is to find or classify all
groups within certain classes and then to find all possible representations. How this is
achieved for Lie groups will be outlined in these lectures although the emphasis will be
on simple cases. Although group theory can be considered in the abstract, in theoretical
physics finding and using particular matrix representations are very often the critical issue.
In fact large numbers of groups are defined in terms of particular classes of matrices.

Group theoretical notions are relevant in all areas of theoretical physics but they are
particularly important when quantum mechanics is involved. In quantum theory physical
systems are associated with vectors belonging to a vector space and symmetry transforma-
tions of the system are associated with linear transformations of the vector space. With a
choice of basis these correspond to matrices so that directly we may see why group repre-
sentations are so crucial. Historically group theory as an area of mathematics particularly
relevant in theoretical physics first came to the fore in the 1930’s directly because of its ap-
plications in quantum mechanics (or matrix mechanics as the Heisenberg formulation was
then sometimes referred to). At that time the symmetry group of most relevance was that
for rotations in three dimensional space, the associated representations, which are associ-
ated with the quantum mechanical treatment of angular momentum, were used to classify
atomic energy levels. The history of nuclear and particle physics is very much a quest to
find symmetry groups. Initially the aim was to find a way of classifying particles with nearly
the same mass and initially involved isospin symmetry. This was later generalised to the
symmetry group SU(3), the eightfold way, and famously led to the prediction of a new
particle the Q7. The representations of SU(3) are naturally interpreted in terms of more
fundamental particles the quarks which are now the basis of our understanding of particle
physics.

Apart from symmetries describing observed particles, group theory is of fundamental
importance in gauge theories. All field theories which play a role in high energy physics are
gauge field theories which are each associated with a particular gauge group. Gauge groups
are Lie groups where the group elements depend on the space-time position and the gauge
fields correspond to a particular representation, the adjoint representation. To understand
such gauge field theories it is essential to know at least the basic ideas of Lie group theory,
although active research often requires going considerably further.



1.1 Basic Definitions and Terminology

A group G is a set of elements {g;} (here we suppose the elements are labelled by a discrete
index 7 but the definitions are easily extended to the case where the elements depend on
continuously varying parameters) with a product operation such that

Further we require that there is an identity e € G such that for any g € G
eg=ge=g, (1.2)

and also g has an inverse g~ so that

Furthermore the product must satisfy associativity

9i(9j9r) = (9:95)gr for all g;, 95,91 € G, (1.4)

so that the order in which a product is evaluated is immaterial. A group is abelian if

9i95 = 9;9; for all g;,g;€G. (1.5)

For a finite discrete group with n elements then n = |G| is the order of the group.
For any g € G the smallest integer m such that g™ = e is the order of g.

Two groups G = {g;} and G’ = {gj} are isomorphic, G ~ G', if there is a one to one
correspondence 6 : g; <> gj between the elements consistent with the group multiplication
rules. Even if G ~ G’ there is not necessarily a unique choice for § but of course we must
have 0 : e < €.

A crucial consequence of the basic group axioms is
{9i9} = {g;} forany g since gjg=gi9 = g;=gi, (1.6)

which implies for a finite group

i f(9i) =% f(99) - (1.7)

1.1.1 Subgroups and Cosets

For any group G a subgroup H c G is naturally defined as a set of elements belonging to G
which is also a group. A proper subgroup H is when H # GG and is denoted H < G. For any
subgroup H there is an equivalence relation between g;, ¢’ € G,

gi~¢gi < 4gi=gh for heH. (1.8)



Each equivalence class {g;} defines a left coset and has |H| elements. Of course {e} = H.
There can also be right cosets where in (1.8) we take g; = h ¢’; instead. The cosets form the
coset space G|H,

G/H~G|~ ={gH:geG,g~¢g" ifg' =gh,heH)}. (1.9)
Since each coset is distinct
dimG/H =|G/H| = |G|/|H|. (1.10)

The fact that, for any subgroup H c G, |H| divides |G| is Lagrange’s theorem.! The index of
the subgroup H in G is the number of cosets in G/H, denoted G : H = |G|/|H|. The index
is also a divisor of |G|. In general left and right cosets are different.

In general G/H is not a group since g; ~ g%, gj ~ ¢'; does not imply gig; ~ ¢%9';.

1.1.2 Normal Subgroups, Quotient Group, Simple Groups and Composition
Series

A normal or invariant subgroup is a subgroup N c G such that
gNg =N foral geQ. (1.11)

This may be denoted by N < G (or G > N). In this case G/N becomes a group since for
g% = gihi, g’y = gjh;, with hi,h; € N, then ¢%ig’; = gigjh for some h € N. Q = G/N is then
the quotient group, or sometimes the factor group. The group G is an extension of Q by N.
The quotient group is expressible in terms of cosets by

GIN ={gN[~:9€G,g~ghheN}, (1.12)
where elements of the quotient group satisfy

(gN)(¢'N)=(gg'N), (gN)"=(g7'N), e=(N), (1.13)

with the group multiplication rule and inverse following from Ng = gIN, for N a normal
subgroup, and N2 = N. In general the quotient group @ is not a subgroup of G. For an
abelian group all subgroups are necessarily normal subgroups. A normal subgroup N is
maximal if there is no N’ # N, G such that N << N’ < G. As shown later there can be more
than one maximal normal subgroup.

For a normal subgroup the left and right cosets are identical since gh = h'g for any g € G
and for any h € N there is a corresponding h’' € N.

If H is a subgroup of G and |G|/|H| =2 then H has to be a normal subgroup since the
right coset other than H has to be equal to the left coset. In this case the quotient group
G/H ~ Zy and for g,9' € G, g,¢' ¢ H then gg' € H. In this case H is sometimes called the
halving subgroup.

A group G is simple if the only normal subgroups are G and the trivial subgroup formed
by the identity {e} by itself. Simple groups are the building blocks for finite groups. If N is

! Joseph-Louis Lagrange, born Giuseppe Luigi Lagrangia, 1736-1813, French, after Italian.



a maximal normal subgroup of G then the quotient G/N is a simple group. To verify this
if N is not maximal there is a normal subgroup N’ < G such that N is a subgroup of N'..
Since N is a normal subgroup of G it must also be a normal subgroup of N, N < N’. The
corresponding quotient groups can be expressed as

GIN ={gN/~:geG,g~gh,he N}, N'|N={gN/~:h"eN' b ~h'hheN}. (1.14)
Directly
(gN)W'N (gN)™' = (gh'g™" )N e N'/N, (1.15)

since N’ is a normal subgroup. Thus N'/N < G/N. Conversely if G/N has a non trivial
normal subgroup then there is a normal subgroup N’ < G with N a non trivial normal
subgroup of N'. Hence if N is maximal G/N is simple.

For any G there is a composition series of successive maximal normal subgroups N; <
Ni—l, N() = G where
N,<---aA N1 <G, N,={e}, (1.16)
and all quotients N;_1/N; are simple groups. The composition series is not necessarily
unique but all composition series for G have the same length n. Of course simple groups
themselves have length one.

1.1.3 Direct Product of Groups

For two groups G1,G2 we may define a direct product group G1 x Gy formed by pairs of
elements {(g1,92)}, belonging to (G1,G2), which is defined by the rules

(91,92)(9"1,92) = (919", 9292),  (91.92) " = (g1",93"), e=(e1,e2). (1.17)

So long as it is clear which elements belong to G; and which to G2 we may write the elements
of G1 x G as just g1g2 = g2g1 and e = ejey. For finite groups |Gy x G| = |G4| |G2|. In any
direct product Gy x Go then G ~ {(g1,e2)}, G2 ~ {(e1,92)} are both normal subgroups.
For the direct product G x G then G is of course a subgroup but there is also the diagonal
subgroup G formed from elements {(g,g)} which is not a normal subgroup of G x G.

1.2 Cyclic, Dihedral and Permutation Groups

It is worth describing some particular finite discrete groups which appear frequently.

1.2.1 Cyclic Group

The group Z,, is defined by integers 0,1, ...n—1 with the group operation addition modulo n
and the identity 0. The cyclic group C,, is also defined by the complex numbers 2 /" r =
0,...,n — 1, of modulus one, under multiplication. Clearly it is abelian and C),, ~ Z,.
Abstractly Z,, C, both can be defined by

Zn:C'nz{aT:rz(),l,...,n,aoza”:e}. (1.18)

4



Obviously Z; is the trivial one element group. For p prime Z, has no subgroups, since p
has no divisors, and hence Z,, is simple. If n = pq then Z, and Z, are normal subgroups
and Zpq/Zy, ~ Zq. If p,q are coprime (no common factors) Z,, = Z, x Z4 and both Z,,, Z, are
maximal normal subgroups.

For further illustration we consider Zs x Zy where Zy = {e,b} with b = ¢ and Z4 =
{e,a, a’, a3} with a* = e. This has proper subgroups, which by Lagrange’s theorem can only
have order 2 or 4,

Zy = {e,b}, {e,a®}, {e,ba®}, Z4={e,a,a® a’}, {e,ba,a’ ba®}, Ky={e b a® ba*}. (1.19)

The group K4 = Zo x Zsy is not cyclic, it is the Klein?, group, it has 4 elements all but the
identity of order 2. The list in (1.19) is not just a sum of direct products of subgroups of
7 and Zg4, as demonstrated by the subgroups {e,ba?} and {e, ba, a?, ba®}.

For Z15 there are three possible composition series Z < Zio <l Zig< Z12, 71 < Zio<A 74 <\ Z15 O
71 <1 7Z3<1Ze< Z12, all of length 3. For Z,, the sizes of the quotient groups in the composition
series correspond to the prime factors of n and the length of the composition series is the
number of prime factors, allowing for multiplicity.

1.2.2 Dihedral Group

The dihedral group D,,, of order 2n, is the symmetry group for a regular n-sided polygon
and is formed by rotations a through angles 27r/n together with reflections b. In general

Dnz{ar,arb:r:O,l,...,n—l, a=ad"=e b =e, abzba”_l}. (1.20)

For any 7 (a"b)? = e. For n > 2 the group is non abelian since ba # ab, note that Do = Zg x Zs.
In general {e,b} ~ Zs is a subgroup of D,,.

The centre of D,, depends on whether n is even or odd, Z(Da,+1) = {e} whereas
Z(Dgn) = {e,a"} =~ ZQ.

The normal subgroups of D,, also depend on n. If k divides n, k|n, then the abelian group
Zy, = {a”/ kror=0,1,..., k—l} is a normal subgroup. This includes Z,,. Also Do, has normal
subgroups D,, given by {aQT,aQTb r=0,1,...,n— 1} and {aQT,a%*lb :r=0,1,...,n— 1}.

For H an abelian group then a generalised dihedral group can be defined by all elements
{(h,e), (h,b)} for h € H and {e,b} forming the group Zs so that b = e. Group multipli-
cation is defined so that (hy,e)(ha,e) = (hiha,e), (hi,e)(he,b) = (h1ha,b), (h1,b)(ha,€) =
(hiho 1, b), (h1,b)(ha,b) = (hiho™!,e). Note that (h,e)! = (k71 e), (h,b)7' = (h,b).

1.2.3 Symmetric Group

A frequently occurring group is the permutation or symmetric group S, on n objects. It is
easy to see that the order of S, is n!. For n =3 83 ~ D3, as this is the symmetry group of
an equilateral triangle under permutations of the vertices.

2Felix Klein, 1829-1925, German.



The elements of the permutation group can be decomposed into cycles. Acting on
{1,2,...,n} the 2-cycle (ij), for i # j, takes i < j, the 3-cycle (ijk), with i, j, k all different,

takes ¢ - j - k — i and so on for the arbitrary p-cycle (i1,...,4,), such that p <n and
ir # 15, 1 <14, <n, which generates cyclic permutations of {i1,...,i,}. Trivially the 1-cycle
() leaves 7 invariant. Clearly (i1, ...,i,)P = e and for any one of the (2’) choices for the p {i, }

there are (p —1)! choices for the p-cycle involving {i,} since any p-cycle is invariant under
cyclic permutations. For i, 7, k,[ all distinct (i5)(kl) = (kl)(ij) and also (i7)(jk) = (ijk).
In general a p-cycle can be written as a product of p — 1 2-cycles

(ir, ..., ip) = (i) (izi3) . .. (ip1ip) - (1.21)

To verify the decomposition of the action of some g € S,, into cycles we may consider
for an arbitrary ¢ € {1,2,...,n} all g"i,r = 1,2,.... For some minimal p we must have
gPi = i. The action of g then generates a p-cycle (i1,...,i,) where iy = i. Then for j €
{1,2,...,n}, 7 ¢ {i1,...,ip} acting repeatedly with g generates a new g-cycle (ji,...,Jq)
for some ¢ and j; = j. Continuing in this fashion any element of {1,2,...,n} belongs to
some cycle, if gk = k then the decomposition involves the 1-cycle (k). Thus we may write
9 = 9(ir..ip)(j1..jq)..- Lhe identity e corresponds to the n 1l-cycles (1)(2)...(n). Clearly
g and g7 = Y(ip...i1)(jq.j1)... Dave the same cycle decomposition. If h corresponds to a
permutation o where ¢{1,2,...,n} = {0(1),0(2),...,0(n)} then hg(ilmip)(jlqu)mh‘l =

9(o(ir)..o(ip))(@(j1)--0(jg))-."

Elements in S,, which are given by products of non overlapping p;-cycles, i = 1,...,r,
with 1 < p, <--- <py <p; <nand ¥ ;p; = n form a subset denoted by [p1,p2,...pr].
The identity is obtained for r = n and p; = 1, ¢ = 1,...,n. Subsets in which one or

more p; are different are distinct. To count the number of permutations belonging to
each cycle type we first assume the p; are all different so that p; > p;+1. Then there are
n!/T1; pi! ways of assigning {1,2,...,n} to the different cycles but each cycle is invariant
under p; cyclic permutations so there are (p; —1)! possibilities for each p;-cycle. This gives
[T (pi — 1)!n!/pi! = n!/TT}_, p; different permutations. Suppose more generally there are
Ji pi-cycles so that >.;_; jipi = n. Then the previous argument gives a factor piji but there
must also be a factor j;! in the denominator since permutations between the different p;-
cycles give the same permutation. The number of elements in &, which belong to the
subset corresponding to cycles [p1(j1), p2(j2),- .., pr(jr)], where p;(j;) means p; is repeated
ji times, is then

nl

N _,
[ [Ti1 pi?igi!

T
p1G1)sepr ()] = pi>pie, Ji21,1<r<n, Y jipi=n. (1.22)
=1

Since the total number of permutations is n! we must have

nl=% > Y Onyr g NipiGn)epe ()] - (1.23)

r=1j1,52,...dr21 p1>p2>...pr>1

Note that Nj(,)) = 1. Each choice of integer p; > pi+1 > ... p, >0, with p; repeated j; times,
T

A:[pl(.jl)va(jQ)a-"7p7‘(j7")]7 Z]Zplzn7 71:1727"' ) (124)
i=1
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corresponds to a partition of n. The number of possible partitions increases very rapidly
with n.

All n! elements of S, can be obtained from products of the n -1 2-cycles o; = (ii+1)
where the o; may be defined abstractly by requiring

{O’i,iz 1,...,n-1:02=¢, (0iois1)> =€, i=1,...,n -2, o0 =005, |i—j|> 1}. (1.25)
The condition (o;0;41)% = e can be alternatively expressed as
0i0i+10; = 04100441 - (1.26)

The conditions in (1.25) are sufficient to define the permutation group S, in terms of all
possible distinct products of o; and can be used to determine the group multiplication. For
each possible product imposing the relations (1.25) ensure the number of ¢; in the product
is unchanged mod 2. Thus for

0 =00i,...04 sgn(o) =e, = (-1)?, (1.27)

€y, the sign or signature of o, does not depend on the particular decomposition of o.
Even/odd elements of S,, correspond to &, = +1. Crucially

€&’ = Ego’ Eg-1 =Eg . (128)
The product o103 ... 0,1 corresponds to the r-cycle (12 ... r) and must in consequence

satisfy
(o109...00-1) =€, T=2,3,...,n. (1.29)

This may be verified as a consequence of just the relations (1.25) by induction from
(o1...00)°=(01...0p-1)°0pOp-1...Op_s41, S=1,...,7, (1.30)

which, subject to (1.29), implies (o1 ...0,)" = (01...0,)"! and hence (1.29) for r — 7 + 1.
In turn (1.30) follows inductively starting from s = 1 by multiplying (1.30) on the right
successively by o7 ...0, and using

0rOp—1 .- Op_sp1(01...0p)=(01...0p-1)Op...Op_s, S=1,...,1, (1.31)
or, commuting oy, o; for |i —j| > 1,

OrOp—1:--0r-5+107-30p—s+1..-0p = UT—S(UTUT—I <+ O0p—54+20pr-5+107p—542 - - - Ur)Ur—s

= .. .= 0p_Op_g4l-+-Op_10pOp_1...0p_g, (1.32)
repeatedly using (1.26). This argument easily extends to showing
(0’1'0“.1 ...0’,‘+p_2)p =e, (133)

so that 00441 ...0i4p-2 is a p-cycle.



As an illustration of how more general permutations can be generated in terms of prod-
ucts of {o;} then

0i0i+1...0505-1...04, j>i,
5; =10, j=1, (1.34)
0j0j41...04-104-2...05, j<i—1,

2

satisfies ;° = e and corresponds to the 2-cycle (ij+1).

An alternative expression for arbitrary elements belonging to S,, can be obtained in
terms of products of cycles where

ar=01...00-1, T=2,...,n, ai=e, a =e, &g =(-1)"1, (1.35)
and then an arbitrary o € §,, can be written as
o=an " Ap1""...a3"?, r;=0,1,...,i—1. (1.36)

It is easy to see that there are n! possibilities and arbitrary products can be brought to the
form (1.36) by repeatedly using

asag = af a1 2as.1, s$=2,3,....t-1, t=3,...n, (1.37)

as well as a,” = e. Of course this rule preserves the signature. For just n = 3 then taking
as = b, ag reproduces the group multiplication rules defining D3 ~ S3 in (1.20).

1.2.4 Alternating Group

The alternating group A4,, is the normal subgroup of S, formed by even permutations. It
has n!/2 elements and for n > 5 is simple since, as discussed further later, there are then no
normal subgroups apart from the identity. In general S, /A,, ~ Zs.

As a consequence of (1.21) the alternating group A, can only contain single p-cycles
with p odd or products of distinct p-cycles, p1,po, ..., with ¥;(p; — 1) even. Every 3-cycle
in &, is contained in A, since for i, j, k distinct

(ijk) = (ik) (ij) . (1.38)

Furthermore any product of 2-cycles is expressible as a product of 3-cycles. If the 2-cycles
are not distinct this has just been shown, otherwise with i, j, k, [ all different.

(ig)(kl) = (ig) (ik) (ki) (Kl) = (jik) (ikl) . (1.39)

As a consequence A, may be generated in terms of 3-cycles just as S, is generated by
2-cycles.

To verify this for A, it is sufficient to consider the 3-cycles s; = (12i+2),i=1,2,...,n-2,
where for i # j, s;s; = (1i)(2j). The group elements s;, = 1,...,n — 2 obey the abstract
relations

si=e, i%j, (sisj)>=e = sisj=s8; 8 =557, (1.40)



Starting from Az = {e, 51, s,?} the groups A, may be defined inductively by
Api1 = {An7 Ap sn-1, An 5n7127 Ay Sn718@2 i=1,...m— 2} . (141)

It is necessary to check Api18,-1 = Ap+1, which follows from (1.40) since s,-1 S Spq =
sfsp_1si and A,s; = Ay, and also for j=1,...,n-2, Ap+18; = Aps1, which is a consequence
of 5,15 = sfsn,lz, sn,12sj = sjsn,lsf and for j # i, sp_157 55 = siQSjsn,lsf.

All 3-cycles are conjugate in A, so long as n > 5. It must be true that there is a 0 € S,
such that
o(ijk)ot = (i'5'k), (1.42)

for arbitrary distinct 4,7,k and ¢’,j',k’. If o is even then o € A,, otherwise if n > 5 we
can take o - o’ = o(Im) where [, m are different from i, j, k to achieve the same result and
o’ € A,. In a similar fashion all n-cycles, for n odd, are conjugate in A, 2. However 5-cycles
in As are not necessarily conjugate. There are 6 Zs subgroups {e, 0i, 02,08, a{l} generated
by a 5-cycle ;. Of these two sets of 3 are each conjugate.

As special cases A3 ~ Z3 and Ay is the symmetry group, without reflections, of a regular
tetrahedron. The group is formed by 27/3, 47/3 rotations about axes from each of 4 vertices
to the centre of the opposite face and also rotations of m about the three lines joining the
mid points of opposite edges. Thus, apart from the identity, A4 is composed of 8 different
3-cycles and 3 products of two distinct 2-cycles which, with the identity, form a normal
subgroup.

For arbitrary n any normal subgroup N < A, which contains a 3-cycle must, as a
consequence of (1.42), also contain all 3-cycles and so N = A,,. For n > 5 it is possible to
show that N must contain a 3-cycle and therefore N = A,, and A, is simple so long as n > 5.
To show this let ¢ € NV be a non trivial group element containing p 1-cycles. Then it is
possible to choose 7 € A,,, 7 'oT € N since o € N, such that ¢/ = o~ '77 o7 € N contains p’
1-cycles with p’ > p. This process may be continued until p’ = n — 3 and then ¢’ is just a
3-cycle. As an illustration if o = (12)(34) then taking 7 = (12)(35) we have o’ = (345) or if
o =(12345) and 7 = (123) then o’ = (125).

-

1.3 Orbit Stabiliser Theorem

An important result which has many applications arises when a group G acts on a space
X = {x} so that for any g € G there is an action z - gz. For any particular x € X the
stabiliser group, or little group, G, is defined by those elements of G which leave x invariant,
Gy ={h:heG, hr =x}. It is easy to see that G, is a subgroup of G. The orbit of z is the
set of points in X obtained by the action of G, O, = {2’ : 2’ = gz}. O, can be identified
with the coset G/G,. This is the orbit stabiliser theorem and we have for a finite group G
the dimension of the orbit

dim O, = |G|/|G.|, (1.43)

which is an integer by Lagrange’s theorem. Clearly for 2’ € O, then G ~ G, since hx =
x, ¥’ = gz implies h'z’ = 2’ for h' = ghg™!. In general the space X may be decomposed into
orbits under the action of G.



1.4 Further Definitions

Here we give some supplementary definitions connected with groups which play a crucial
role in the theory of groups and introduces important notation.

1.4.1 Automorphisms and Semi-Direct Product

An automorphism of a group G = {g;} is defined as a mapping between elements, g; - ¢(g;),
such that the product rule is preserved, i.e.

©(9:)e(g;) = v(gigj) forall g;,g;€G, (1.44)

so that Gy, = {¢(g:)} ~ G. Clearly we must have ¢(e) = e and ¢(g7) = ¢(g)~'. In general
for any fixed g € G we may define an inner automorphism by ¢q(g;) = ggig~", otherwise
the automorphism is outer. It is straightforward to see that the set of all automorphisms
of G itself forms a group AutG which must include the group of inner autmorphisms
Inn G = G/Z(G) as a normal subgroup, the quotient Out G = Aut G/Inn G defines the outer
automorphism group. For an abelian group there are no non trivial inner automorphisms
but there can be non trivial outer automorphisms, e.g. for Z3 take {e,a,a?} - {e,a® a}.
In this case AutZs = Zo and Zs/Z(Zs) = {e} the trivial one element group. In a similar
fashion AutZ, = Z,_1 whenever n is prime.

There is also an antiautomorphism group Anti G which is defined by all maps g; - ¢(g;)
such that

©(9i)e(g;) = ¢(g;jgi) for all g;,gjeG. (1.45)
Clearly AntiG = Aut G if G is abelian.

If H c Aut G, so that for any h € H and any g € G we have g = on(g) with

en(91)en(92) = en(9192) (1.46)
and

on (Pns(9)) = Prna(9), wn(e)=e, we(9) =g, wn1(9)=en'(9), (1.47)

we may define a new group called the semi-direct product of H with G, denoted H x G,
or G x H. As with the direct product this is defined in terms of pairs of elements (h,g)
belonging to (H,G) but with the rather less trivial product rule

(h,g)(h',g") = (hh ,gon(d)), (h,g) ™' = (A op-1(g7")). (1.48)
From this it follows that
(h,g)(e,g")(h,g) " = (e,9¢n(g")g™") forany g,9'€G, heH. (1.49)

Consequently the subgroup {(e,g)} ~ G is a normal subgroup of H x G and hence H =~
(HxG)/G.
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It is often convenient to write the elements of H x G as simple products so that we may
abbreviate (h,g) = hg = on(g)h.

As a simple illustration we have D, =~ Zo x Z, where Zy = {e,b : b*> = ¢} and also
Zn={a":r=0,...n-1, a" =e}. The semi-direct product is then defined by taking, for any
g=a" €Zn, pp(g9) =gt =bgbt. Z, is a normal subgroup of of D,,.

The case of a maximal semi-direct product of G with Aut G
G x Aut G = Hol G, (1.50)

has a special name, the holomorph of G. From the above example D3 ~ Hol Z3.

1.4.2 Wreath Products and Central Products

Another semi-direct product is obtained if we take G > Gpx = G x G x -+ x (G, the n-fold
direct product, with H = §,, permuting the elements of each of the factors so that, for any

g: (917927"'7971) € Gnm

905800(91)927"'7971):(90(1)790(2)7"‘790(71))7 geSy. (151)

This then defines S, x G x. This is an example of a wreath product, denoted G:S,,, and has
order n!|G|". A particular example is By, = Z2:S,, the hyperoctahedral group, which is the
symmetry group of the n-dimensional hypercube. As special cases By = Dy, the symmetry
group of the square, and B3 = 84 x Zs, the symmetry group of the cube.

If the permutations acting on G« are restricted to a subgroup of S, there is a corre-
sponding wreath product, for just cyclic permutations of (g1,...,g,) this is G2 Z,.

Another prescription for combining groups is obtained essentially by taking the direct
product and dividing by some common elements. If G1, Gy are two groups then for H; c
Z(G1), Hy ¢ Z(G2) then for H; ~ Hy with the isomorphism 6 such that h; <> hg then
{(h1,h2)} = H, where H ~ Hy ~ Hs is a normal subgroup of Hy x Hs. The quotient
(G1 x G2)/H defines the central product.

A rather trivial example arises if G1 = Zy4, Go = Zg. In this case we can take H = Zs and
(Z4 X ZG)/ZQ ~ Zlg.

1.4.3 Conjugacy Classes

If g; = ggig~" for some ¢ € G then g; is conjugate to g;, gj ~ g;- The equivalence relation ~
divides GG into conjugacy classes

Cs={9i:9i~gs :ggig_l, geG}, s=1,...,Nehar - (1.52)

Different conjugacy classes are distinct CsnCy =@, s # ', and G = U;Cs, |G| = Zé\icf‘“ ds for
ds = dimC,. For any g € G, gCs g~ ' = C,. Clearly the identity is in a conjugacy class C; by
itself. In general

9i,9;€Cs = gitgiteCs, ICs| = |Cs], (1.53)
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where Cs = C, if g, g7 " € Cs. It is sometimes convenient in this case to write Cs = Cs L.

For any h € G the associated conjugacy class containing h is given by
C(h)={ghg':geqG}. (1.54)
G also contains a subgroup defined by
Ca(h)={g:ghg " =h, ge G}, (1.55)
and then, by the orbit stabiliser theorem,
dimC(h) = |G|/|Ca(h)]. (1.56)

By Lagrange’s theorem |Cq(h)| divides |G| so that the dimensions of any conjugacy class
must also divide |G|.

Under group multiplication the product of two conjugacy classes must be expressible in
terms of a union of conjugacy classes so that there is a multiplication rule

Cs Ct = U Cstu Cu, (157)

where cg" takes the values 0,1,2,.... Since C5g = gCs for any g € G then C;C; = C; Cs and
thus cg® = ;5% Furthermore c14% = 6%, cs5' = ds and Y, csi%dy = d d.

For an abelian group all elements have their own conjugacy class necessarily of dimension
1. The elements in a conjugacy class have similar properties such as g;" = e for the same n
for all g; € Cs. Any normal subgroup is composed of conjugacy classes which must include
Ci1. For S3 which has elements {e,a,a? b,ab,a?b}, where b = (12), a = (123), there are
three conjugacy classes {e}, {a,a?}, {b,ab,a?b}. {e,a,a®} forms a normal subgroup which
is isomorphic to Zs.

For the dihedral group D, as defined in (1.20), the conjugacy classes are different
according to whether n is even or odd. Labelling them by their size these are

Ci={e}, ngz{ar,a"”},rzl,...%(n—l), Cn:{aTb:rzo,l,...,n—l}, n odd,

Cip={e}, Cia= {a%”}, Cop={a",a" "}, r=1,..., %(n—Q),
C%ml:{a2rb:r=0,1,---,%n—1}, C%ng:{a2r+1b:r:0,1,...,%n—1}, n even. (1.58)

There are then %(n +3) conjugacy classes for n odd, %(n +6) for n even. The conjugacy
classes are all self inverse in that each conjugacy class C contains the inverse for each group
element in C.

Under multiplication for n odd

C?,|r—s| U CQJurS or 627‘7"_5‘ U CQ,n—r—s rT+S
C2,r C2,s =
2C1 @] C2,27- or 2C1 @] C27n_27« r=s

CosCn=CnCop=2Cy,  CnCn=nC U, Cap. (1.59)
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Results for n even are similar.

For n even D, has an external automorphism which interchanges the two conjugacy
classes involving b. The automorphism group is generated by c:a - a" !, b - ab. Clearly
c? is the identity and Out D,, = {e,c: ¢® = e} = Zy. Correspondingly for n even Zyx D,, ~ Do,
since for Zy = {e,c} and D,, as in (1.20) then Ds, = {a", a"c,a"b, a"bc:r =0,...,n -1}
for cac=a""', cbe = ab. Defining a’ = abe, V' = ac then a’?" =2 = e and o',V satisfy the
conditions to generate Ds,. Conversely for n odd Zs x D,, ~ Dy, where the extra element c
commutes with a, b. This follows from Zsg x Z,, ~ Z9, for n odd.

The decomposition of any ¢ € S,, into non overlapping, or disjoint, cycles is unchanged
under conjugation. For o € §,, given by a product of non overlapping cycles all other o’ € S,,
expressible as a product of the same cycles can be obtained from ¢ by some permutation
in S, and in consequence ¢’ can be obtained from o by conjugation. If ¢’ has a different
expression in terms of cycles then it cannot. Hence for an identical decomposition into
cycles, up to ordering, o,0’ belong to the same conjugacy class. The different conjugacy
classes of S, are then labelled Cpy, (j,),...p.(j,)] With p1,p2,...,pr together with ji,...,j,
corresponding to a partition of n such that 1 <p, <--- <py <p; <n with >, j;p;i =n. The
dimensions of the conjugacy classes for S,, are given by the general formula (1.22).

As a consequence of (1.28) e,,/,-1 = €, so that the sign of all group elements in S,
belonging to a particular conjugacy class is the same and is given by

i Ji(pi=1
0 € Clpy(ju)spr )]+ €0 = (F1)FIED. (1.60)

Since there equal numbers of o with €, = £1 we must have

> 2 > Onsr i NiwGoywe Gy (F1Z P =0, (1.61)

r=1j1,j2,...Jr21 p1>p2>...pr>1

The elements of the alternating group A, correspond to those o € S, with a cycle
decomposition in which the number of even n-cycles is also even and e, = 1. However the
conjugacy classes in A,, are not just determined by the cycle decomposition as for S, since
only even permutations are generated by conjugation in A,. Conjugacy classes in S,, may
split into two on reduction to A,.

The conjugacy classes for S,, can be identified with Young® diagrams which are formed
by n boxes in rows of decreasing size according to the partition of n. Those for S5 are

(500D, (41 0, [32) EL 2001 [
|
[3.12)] 5, [2163)] ] , [16)] @ (1.62)

Such diagrams play an important role in discussions of the permutation group.

3 Alfred Young, 1873-1940, British, 10th wrangler
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As a illustration we consider the cases n = 3,4,5. For S3 there are just three conjugacy
classes with dimensions

N =2, Npy=()=3,  Nugyp=1. (1.63)

The different conjugacy classes are Cpysy = {e}, Cz1 = {a,a?}, Ca.1) = {b,ba,ba*} where
a®=b? = e, ba = a?b. C[2,1] contains all odd permutations so Az = {e,a,a’®}. However this is
abelian so each element has its own conjugacy class. Similarly for Sy

Nap=31=6, Npsay=2(3)=8, Npep=3() =3, Naae=()=6, Nuw :11();4)
The elements of the alternating group A4 belong to the conjugacy classes Cpy(4y], Cr3,1]
and Cp(2)] in S4. The elements of Cla2)], a = (12)(34), b = (13)(24), ab = ba = (14)(23),
together e form a normal subgroup of both Sy and A4, a? = b? = e, which is isomorphic to
Ds. However the cycles (123)(4) and (124)(3) belonging to A4 are not conjugate in Ay
since the permutation linking them involves one 2-cycle. Hence C[3 ;] decomposes into two
equal conjugacy classes of size 4.

For S5 corresponding to (1.62)

Nisp=4!=24, Npap=3(3) =30, Npszp=2(5) =20, Npsay =2(5) =20,
N2y = 3()(2) =155 Naagay = (3) =10, Ny =1- (1.65)

A5 is given by elements belonging to the conjugacy classes C(31(2)], C[s]; C2(2),1] as well as
Cli(5)] in S5. However Cps; splits into two conjugacy classes for As each of size 12 and the
dimensions of the five conjugacy classes are then 1+20+ 12+ 12+ 15 = 60. In this case none
of the dimensions including 1 for Cpy(5)] add up to a divisor of 60 = [A5|. Hence A5 has no
non trivial normal subgroups and is simple. It is the smallest non abelian group with this

property.

An alternative labelling of conjugacy classes for S,, instead of [p1(j1),...,pr(jr)] for
r=1,...,n is obtained by taking

m=1,...,n, Yr _mky=n, (1.66)

T Jis p; =m for some 17,
" 0, p; #m for any i,

where Nip (1),prGe)] = 7Y Tzt mFmm! and e, = (-1)™ D= For a function on con-
jugacy classes of Sy, f(ki,...,kn), the corresponding sum over all classes is simply given
by
On, 5 ymkm fka, . kn). (1.67)
k17k2,zj,kn>0n " H 1mkmm'

As an example for ¢ = (q1,q2,-..) there is a generating function obtained by summing
over n

N T ) & 1" g
- Fe (2 S oo £15) e
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If ¢, = f(2™) for some function f then

F(u7g) = PE(U,(L‘,f) = exp( i %('xm))

m=1

S1+uf(z)+ S umVIE(z),  (1.69)

m>2

is the plethystic exponential formed from the function f and

V(@) = 5(F(2)* + f(2?), Vf(x) = 5(f(2)°+3 f(2®)f(z) +2f(a”)). (1.70)

For a constant function f(z) =c

eXp( ) umc): (1—1u)c S heer ) - (1.71)

m=1 M r=0

Including the sign factor for odd permutations

PEA(u,z; f) = exp( il(—l)ml%(xm)) =1+uf(z)+ Y, u"N"f(z), (1.72)

m>2

with

Nf(x) = 5(f(2)* - f(2®)), Nf(x)=5(f(2)’ -3 f(2®)f(z) +2f(z”)). (1.73)

1.4.4 Centre, Normaliser, Centraliser and Commutator Subgroups

The centre of a group G, Z(G), is the set of elements which commute with all elements
of G. This is clearly an abelian normal subgroup. For an abelian group Z(G) ~ G. The
centre is a normal subgroup and the quotient group G/Z(QG) is referred to as the inner
automorphism group.

For a subset of a group H c GG, not necessarily a subgroup, then the elements g € G such
that ghg™! e H for all he H, or gHg™' = H, form a subgroup of G called the normaliser of
H in G, written Ng(H). If H is a subgroup then clearly H <t Ng(H) and if H is a normal
subgroup, Ng(H) = G.

The subgroup of G formed by elements {g} such that ghg™' = h for all h € H forms the
centraliser Cq(H). Necessarily Cq(H) ¢ Ng(H).

For any two elements of G, g, h, then
[9,h] =g 'h " gh, (1.74)

is the commutator of g, h. If G is abelian then [g, h] = e for all g, h. More generally if [g,h] =
e then g and h commute. In general [g,h]™! = [k, g] and for any ¢’ € G then g¢'[g,h]g’ ™! =
[¢'99" 1, ghg'~']. The product of two commutators need not be a commutator (this can
only arise if the order of G is at least 96) but there is a subgroup of G, the commutator
or derived subgroup G' = [G,G] formed from arbitrary products of commutators. From the
above g[G,Glg7! = [G,G] for any g € G so [G,G] is a normal subgroup. For any g1,92 € G
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then g1g2 = g291[91,92] so that the quotient group G/[G,G] is abelian. For any normal
subgroup N < G then the quotient G/N is abelian only if [G,G] < N. Of course if G is
abelian [G,G] = {e}, the trivial group.

A group is perfect if G = [G,G]. A non abelian simple group must be perfect since
[G,G] is a normal subgroup and [G,G] # {e} if G is non abelian. The converse is not
necessary.

As an example we may consider the dihedral group D,, as presented in (1.20). In this
case [Dy, Dy] = {e,a,d?,...,a" '} = Z,. The quotient is just Zs.

The notion of the commutator subgroup may be extended to define the derived series
where G = [ G D] where G(») = G and n = 1,2,.... Evidently ---<q G «
G g ...GM q G. For a finite group this series must terminate in a perfect group or
G = {e} for some n. In this case G is solvable.

1.4.5 Double Coset

An extension of the notion of a coset is a double coset. If H, K are subgroups H, K c G
then the equivalence relation (1.8) can be extended to

gi~gi < gi=kgih for he H, ke K, (1.75)

where under this equivalence relation {g;} defines a double coset and these double cosets
form K\G/H. In general there is a one to one correspondence of K\G/H with H\G/K
since gi' = h™'¢’7'k™'. The potential extension of Lagrange’s theorem is not valid since
in general the cosets belonging to K\G/H have dimensions which need not divide |G|. If
G =Dsand H = {e, b}, K = {e,ba}, which are both Zy subgroups, then K\G/H is comprised
of {e,b,ba,a®} and {a,ba’} whereas H\G/K is formed from {e,b,ba,a} and {a?, ba?}.

1.4.6 Goursat’s Lemma

A nice application of the basic definitions of group theory due to Goursat' shows how
subgroups of direct products are obtained. For G = G x G and a subgroup H < G then we
may define two subgroups of G by

Hy={hi}, (h1,h2)eH for any ha, Ni={ni1}, (ni,e2)eH. (1.76)

Since (hl,hg)(n1,€2)(h1,h2)71 = (hlnlhfl,eg) h1n1h171 € Ny for any hi € Hy so that Ny
is a normal subgroup of Hj, N; < Hj. There is then a quotient group 1 = H;/N;. In a
similar fashion we can define Ho, Ny and Q2. The aim of the lemma is to show Q1 ~ Q.

To show this assume (hy,hs), (h1,he’) € H. Then (hi,hs) ' (h1,ho’) = (e1,ha thy') so
that ho'ho' € Ny or ha, ho' both correspond to the same ¢s € Q2. Extending this to hq, hy
ensures

(h1,h2), (k' k") e H < (hi',ho") = (hini, hang) for some nq € Ny,nge Ny. (1.77)

4Edouard Goursat, 1858-1936, French.
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This implies that any (hi,he) € H can be expressed as (qini,gane) where go determines
q1 and vice versa. In consequence there is a unique mapping ¢ : q1 - g2 with inverse
¢~ ' go - q1 and this preserves the group properties so that Q; ~ Q.

The subgroups H < G1 x G are therefore determined by subgroups Hi, Ho of G1,G>
which have normal subgroups Nj, Ny such that Hy/Ny ~ Hy/Ny ~ Q. If H; = N and
Hy = Ns, so the quotient groups are trivial, H = H; x Hs. From this result the order of H,
|H| = |N1||N2||Q = [H1|[Ha|/|Q).

As an illustration if we consider the subgroups of Zg x Z4 in (1.19) which are not simple
direct products we have

H={€7ba2}) H1={€,b}, N1={€}, H2={6,a2}, N2={€}a
H ={e,ba,a®,ba®}, Hy={e,b}, Ni={e}, Hy={e,a,a*a’}, Ny={e,a®}, (1.78)

In both examples H1/Ny ~ Hy/Noy ~ Z3. For G x G the diagonal subgroup corresponds to
taking Hy = Hy = G and Ny = Na = {e} with the map ¢ obtained by taking g; = go.

1.5 Quaternion Groups

Quaternions are defined in terms {i,j,k} which have the properties
iP=2=k*=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j, (1.79)

were famously discovered, or invented, by Hamilton® on 16th October 1843 and are an
extension of the usual complex numbers C. They can be defined by requiring ¢, j to satisfy
just the relations i? = j2 = (ij)% = =1. Then

]HI:{q:q:x01+x1i+x2j+x3k,xiER}, (1.80)
where ¢ has a conjugate ¢ = xg1 — x14 — 22§ — 23k and ¢7 = |¢*1, |¢]* = &, 2.2, If §= —q,
so that xg = 0, then ¢ is imaginary. A unit quaternion has |g| = 1. A crucial property of
quaternions is that they satisfy |¢q’| = |q||¢’| and so form a division algebra.

Any quaternion can be expressed as a product of two imaginary quaternions. To show
this suppose ¢ = go 1 + Im g and choose an imaginary quaternion r such that

Imgr+rImg=0, 7=-r, rP=-1 = rqr=—q. (1.81)

For r = ryi+rg j+rs k this just requires (71, r2,73) is a unit 3-vector orthogonal to (z1, 2, x3).
Then another imaginary quaternion s is given by

s=-rq = §=-s, s2=-|q*1, q=rs. (1.82)

Furthermore any unit quaternion ¢ can be written as a commutator as in (1.74). For

g=ql+qu, u=-u u®=-1,qg°+q? =1 a unit quaternion square root can be defined

SWilliam Rowan Hamilton, 1805-65, Irish.
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by /¢ =al+bu for a® = %(qo +1q|), 2ab = ¢ and then taking /g = r s for imaginary unit
quaternions r, s implies
g=rsrs=r"'sirs. (1.83)

Quaternion multiplication is associative and any non zero quaternion ¢ has a unique
inverse ¢~' = G/|q|* so that H* = {q: ¢ € H,q # 0} forms a group. The subgroups of H*
define several important groups. Since the product of two unit quaternions is also a unit
quaternion there is an infinite continuous non abelian group

Q={q:qeH, Jgl=1}, ¢ '=q. (1.84)

The centre Z(Q) ~ {1,-1} and the quotient Q/{1,-1} = {q:|q| = 1,¢ ~ —¢}. From (1.83)
Q ~ [H*,H*] and the associated quotient group H*/[H*,H*] = {|q| : ¢ € H*} is just the
group formed by positive real numbers under multiplication.

Q contains abelian subgroups {¢’9 = cos@1+sinfG: = ai+Bj+vk,|j=1,0<0 <2x}.

There are also finite subgroups of Q. It is easy to see that

Cn:{ezw/m:rzo,l,...,n—l}, n=1,2,...,
Qun = {e™/M ™M r=0,1,...,2n -1}, n=1,2,..., (1.85)

form groups of order n, 4n respectively. Clearly C, ~ Z,, and form the cyclic groups. The
groups Qg, are referred to as dicyclic or binary dihedral or generalised quaternion groups.
They may also be denoted, for later convenience, by 2D,,. For n =1 the group is not dicyclic
but we may identify 2D ~ Z4. For n = 2 this group becomes the non abelian quaternion
group

Qs = {1, +i, +j, +k}. (1.86)

Q4 contains Cy, as a normal subgroup. The conjugacy classes for Qg, are very similar to
those for Dy, in (1.58)

Cii={1}, Cia={-1}, Cor= {e”/m, e”("f’")r/m}, r=1,....,n-1,
Coq = {€™Mjr=0,1,...,n -1}, Cop={e™®D/Mjr=0,1,...,n-1}.  (1.87)

Qg can be decomposed into five conjugacy classes which each have one or two elements,
Ciq={1}, Cia={-1}, Coq = {xi}, Coa = {27}, Ca3 = {xk}. Quy contains a normal subgroup
{1,-1} and the quotient Q4,/{1,-1} ~ D,, which is not a subgroup of Qg,.

The resemblance of Qg4, to the dihedral group may be shown by defining it by the
conditions
at=e, a® =12, babt=a, (1.88)

w/ni

where in terms of quaternions a = e , b=7j and of course e = 1 while a” = b? = -1.

There are further interesting finite groups which can be generated using two imaginary
unit quaternions u,v, u? = v? = —1. If we consider arbitrary products of u,v then we must
have for a finite group

(uv)" =1 for some minimal n. (1.89)
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The group {+1, v, +(uv)", +(uwv) v : r = 1,...,n — 1} subject to (1.89), so that (vu)" =
(uv)™™", is isomorphic to Q4 in (1.85). More general groups are obtained by considering
products of » and s where initially we take

r=u, s=eﬂ/3”:%(1+\/§v), r?=s=-1, (1.90)
and then requiring for finiteness that, for some n=1,2,...,
t=rs=xcosm/nl+sinm/nz, z=-% 2 =-1 = "=—(x1)", (1.91)
where cosm/n > 0. Assuming uv = cos¢ 1+ sin ¢y, with y an imaginary unit quaternion,
V3 cosg=xcosm/n = —%\/ggcosw/nséx/g. (1.92)

This is only possible if n =2,3,4,5,6 but for n = 2, cos¢ = 0 and the corresponding group
is isomorphic to Q12 and for n = 6 then we may take cos¢ = +1 and hence v = Fu and the
group isomorphic to Cz. The interesting cases are then®

n=3, COS%?TZ%, n=4, COS%TFZLQ, n=>5, COS%T(:%(\/E-Fl), (1.93)

and we may take

s:%(1+i+j+k), n=3,r=i, t3=1, n=4, r=%(i+j), th=-1,

n=5,r=%(Gi+oj+7k), 0=3(V5-1), r=3(V5+1), *=1. (1.94)

1.5.1 Tetrahedral, Octahedral and Icosahedral Groups

The group corresponding to n = 3 can be obtained by noting that Qg has an external
automorphism generated by (i, j, k) = (J, k, i) = i(l +i+7+k)(i, 7, k)(1-i—j—k) so that

T=Z3xQs=Qsu{j(xlxixj+k)}, (1.95)

where there are 16 possible choices of + (each + is independent) so that T has order 24 and
is referred to as the binary tetrahedral group, also denoted as 271". For the group elements
not in Qg

(3¢-1+9))°=1, (A(1+q)°=1, qe{xixjxk}. (1.96)

There are seven conjugacy classes comprising T given by
Ci={1},  C={-1},  Ci={=i,=j +k},
Cs={3(-1+q)}, Cs={3(-1-q)}, Cs=-Cs, Cls=-Cs, (1.97)
gef{i+j+k, —i—j+k,—i+j-k,i-j-k},

where here we label the conjugacy classes by the order of the group elements comprising
them. These have dimensions 1+1+6+4+4+4+4 = 24. Without any specific choice of r, s other

The real part of (¢"™/®)° +1 = 0 leads to a quintic equation for 2 = cos7/5 which can be factorised as

(z +1)(42® - 22— 1)® = 0. The other roots determine cos7 = -1 and cos 37/5 = i(—\/5+ 1).
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than satisfying r? = s3 = -1, (rs)3 = 1 the elements of T are determined by the conjugacy
classes C's = {—=s,rs,rsr,srs}, C3 = {2 sr,rs?,s%r}, Cqy = {2r, +srs?, £s>rs} which along
with Cy1, Cy and —C’5, —C3 give the whole group. In this case T'= T/{1,-1} ~ A4 where for
q €T, T is obtained by assuming ¢ ~ —q. Hence T has four conjugacy classes inherited from
those for T which correspond to Cy = {1}, C2 = {i,4,k}, C3 = {3(-1+q)}, C5 = {3(-1-q)},
with four possible ¢ as in (1.97), and where in this case C,, is composed of quaternions with
q" = +1. The dimensions of each class are then 1 +3+4+4 =12.

The binary tetrahedral group T has a Zs automorphism which is generated by taking
(i, 4, k) = (i, k, 5) = —% Jj+k)(i, J, k)(j + k) linking the conjugacy classes Cs, C’s and also
Cs, C's in (1.97). Hence for n = 4 the binary octahedral group, O or 20, is given by

0=ZoxT=Tu{s(xqq"):q,q'=(1,0), (1,5), (1. k), (i.5), (45,k), (k,5)},  (1.98)

which is of order 48. There are also seven conjugacy classes for O given, in a similar
notation, by

Ci={1}, Cy={-1}, Cy={+i,+j,+k},
C3={3(-1xixj+k)},  C¢=-Cs,

CQ;Z{%(ﬂ:iij), %(ijﬂ:k), %(ﬂ:iﬂ:k)},

Cs = {%(ﬂ:l +1), %(il +7), %(il +k)}, (1.99)

with dimensions 1 +1+6+8 + 8+ 12 + 12 = 48. The group O
is composed of five conjugacy classes C; = {1}, Co = {i,j,k}, C

O/{1,-1} ~ 84 and
{Blaxd)ad =

(i.5), (G k), (ki) }, Cs = {53(-1+q) sqe {xixjxk}t} Ca={5(1£q) s g =1, j k} where
1+3+6+8+6=24.

For n =5 there is a group I, the binary icosahedral group also denoted as 21, which can
be defined through the conjugacy classes

Ci={1}, C={-1},

Co={%i,+j, 2k, (xiz0oj+7k), 5(x7izj+0k), 5(20ixTj+k)},

Co={3(1xi+j+k), s(1x7ix0j), 3(l+oixTk), 3(1+7j+0k)}, C3=—Cs,

C5:{%(Uiii7j), %(O':i:j:tTk), %(O’:I:k‘:l:’i‘i)}, Ci0 = —Cs,
b={i(-Txixok), J(-T+jzoi), J(rxk+oj)}, Cho=-C's5, (1.100)

with dimensions 1+ 1+30+20+20+ 12+ 12+ 12+ 12 = 120.7 In this case the quotient
I=1/{1,-1} ~ A5 with five conjugacy classes, C1, C3, C5, Cs, as in (1.100), and also Cy =
{i.jk,3(i+0j+7k), 3(£7i+j+0k), 3(2oi+7j+k)}. Thus 1+20+12+12+15 = 60.
The closure of (1.100) under multiplication depends on o7 = 1,72~ 7 —1 = 0 implying
7-0=1,7%+0% = 3. There are two solutions, one is given in (1.94), the other is obtained
by taking 7 <> —o. The binary icosahedral group contains the subgroup T = 27", which may
be generated by taking r = %(z +o0j+T1k), s= %(1 +Ti+07j), T8 = %(—1 +Tj+o0k), where

7Although I has order 120 it is not isomorphic to Ss or Za x As.
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r? =53 = -1, (rs)® = 1. The cosets t"T, r =1,2,3,4, for t = %(0 +i+7j),t° =1, give, with
T, the full group I. This verifies |I| = 5/T| = 120.

More generally, if instead of (1.90), we were to take s = cosm/m 1 + sinw/mwv, so that
s™ = -1, then requiring (1.91) leads to —sinm/m < cosm/n < sinw/m. If n = 2 this gives
Q4m- Otherwise for m > 3 the only possibilities are m =4, n=3,4 and m =5,6, n = 3. This
just leads to groups already discussed above other than if m =n =4 when cos¢ = +1 and
the group becomes Cy. In summary the finite quaternion groups which contain the element

-1 are just

2G 21 20 2T 2D, 2C,
order 120 48 24 4dn 2n
normal subgroups Zo 2T,2D9, 75 2Ds, 7o 2D1n 2n 2Ck kin
2Ck kln,Cr klnkodd Cy klnkodd
GZQG/{L—I} I:A5 0284 T:‘A4 Dn Cn
(1.101)
where for completeness 2C,, = {e”/m :r=0,1,...,2n - 1} ~ (9, and k|n denotes k divides

n. The only remaining finite group is C,, for n odd, as defined in (1.85). The groups
T, O, I are related to the symmetries of the tetrahedron, cube or equivalently octahedron,
dodecahedron or equivalently icosahedron (in crystallographic literature I is denoted by Y').
Abstractly they can be generated by elements r, s, ¢t = s satisfying r! = s™ = t" = e. With
labels (n,m, 1) then D,, T, O, I correspond to (n,2,2), (3,3,2), (4,3,2), (5,3,2) where for

any such group P

1 1 1 2

-+ —+—=1+—=. 1.102

I m n | P| ( )
The labels for D,, T, O, I are the unique integers n,m,[, up to a reordering, such that the
left hand side in (1.102) is > 1.

Under conjugation the real part of any quaternion group element is invariant so the imag-
inary parts of the unit quaternions in each conjugacy class (1.97), (1.99) and (1.100) form
closed sets under conjugation by any element of T, O and I respectively. Under conjugation
the normal Zy subgroups {1,-1} leave any quaternion invariant so the imaginary parts de-
fine points in three dimensional space which are closed under the action of T, O and I. For
T from (1.97) this gives the four points (1,1,1), (-1,-1,1), (-1,1,-1), (1,-1,-1) which
form the vertices of a tetrahedron and also the six points (+1,0,0), (0,+1,0), (0,0,+1)
correspond to the midpoints of the tetrahedron edges and form the vertices of an oc-
tahedron. For O using (1.99) the same octahedron reappears and also (£1,+1,+1) giv-
ing the eight vertices of a cube. For I the results in (1.100) lead to two sets of 12
points (£1,+7,0), (0,+1,+7), (£7,0,+1) and (£1,0, +0), (x0,+1,0), (0, +0,+1) which, since
o = 1/7, are both the vertices of icosahedron (where 5 triangles meet at each vertex). The 20
points %(:ﬁ:l,:l:l,:l:l), %(:I:T, +0,0), (0,+7,+0), %(:I:O’,O,:I:T) arising from the conjugacy class
Ce form the vertices of a dodecahedron (where 3 pentagons meet at each vertex). The
remaining cases are, for O from C'y, %(:&1,:&1,0), %(O,il,ﬂ:l), %(il,o,il) and, for I
from the conjugacy class C4, (£1,£1,+1), %(il,:l:a, £7), %(:I:T,:l:l,:i:o‘), %(:ﬁ:O', +7,+1) which
correspond to the midpoints of the 12 and 30 edges respectively. These are the vertices
of the cuboctahedron (this has 8 triangle and 6 square faces, two of each meeting at each
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vertex) and icosidodecahedron (this has 20 triangle and 12 pentagon faces, with two each
meeting at each vertex).

1.6 Matrix Groups

It is easy to see that any set of non singular matrices which are closed under matrix multi-
plication form a group since they satisfy (1.2),(1.3),(1.4) with the identity e corresponding
to the unit matrix and the inverse of any element given by the matrix inverse, requiring
that the matrix is non singular so that the determinant is non zero. Many groups are de-
fined in terms of matrices. Thus Gl(n,R) is the set of all real n x n non singular matrices,
Sl(n,R) are those with unit determinant and Gl(n,C), Si(n,C) are the obvious exten-
sions to complex numbers. Since det(M;Ms) = det My det Mo and det M~ = (det M)~! the
matrix determinants form an invariant abelian subgroup unless the the conditions defining
the matrix group require unit determinant for all matrices. The commutator subgroup
for Gi(n,R), [Gl(n,R),Gl(n,R)] ~ Sl(n,R). It is easy to see that AL B~ AB has unit
determinant for any A, B € Gl(n,R) and any element in Si(n,R) can be obtained as a
commutator. The same of course applies for Gl(n,C) and Sl(n,C). For M € Gl(n,R) there
are n? real parameters while for M € Si(n,R), with one condition, there are n? — 1. The
same applies for Gl(n,C) and Si(n,C) although the parameters are then complex.

The trivial one dimensional case for GI(1,R) ~ R where for z,y € R the group operation
is just addition, the identity is 0 and the inverse of = is —zx.

Various matrix groups which are subgroups of Gi(n,R) or Gl(n,C) are obtained by
requiring a bilinear or sesquilinear quadratic form (x,y) for z,y € R” or z,y € C" is invariant
under the group action on x,y. For a sesquilinear form (x,y) then (z,y+y') = (z,y) +(x,y’),
(x +2',y) = (z,y) + (2',y) and (az,By) = a*B(x,y) for a, 5 € C. The sesquilinear form is
hemitian if (z,y) = (y,z)".

Continuous such matrix groups of frequent interest are

1.6.1 Orthogonal

(i) O(n), real orthogonal n x n matrices { M}, so that
MTM=1. (1.103)

This set of matrices is closed under multiplication since (M; M)T = MyT AT, For SO(n)
det M = 1. The invariant quadratic form is just (x,z) = zTz. With = € R” this is positive
definite. A general n x n real matrix has n? real parameters while a symmetric matrix
has $n(n +1). MTM is symmetric so that (1.103) provides 3n(n + 1) conditions. Hence
O(n), and also SO(n), have %n(n — 1) parameters. For n even +1 € SO(n) and these
form the centre of the group so long as n > 2. Thus Z(S0O(2n)) ~ Zy, n = 2,3,..., while
Z(S0(2n+1))={1},n=1,2,... is trivial although Z(O(2n+1)) ={x1} ~Zs, n=1,2,...
and O(2n + 1) ~ Zo x SO(2n + 1). For the trivial one dimensional case O(1) ~ Zs.

22



1.6.2 Unitary

(ii) U(n), complex unitary n x n matrices, so that
MIM=1. (1.104)

Closure follows from (MlMQ)T = My Myt For SU(n) det M = 1. The invariant quadratic
form (z,x) = 2Tz for 2 € C" is hermitian. A general n x n complex matrix has 2n? real
parameters while a hermitian matrix has n?. MTM is hermitian so that U(n) has n?
parameters. (1.104) requires |det M| =1 so imposing det M = 1 now provides one additional
condition so that SU(n) has n? -1 parameters. The centre of U(n) or SU(n) consists of all
elements proportional to the identity (this follows from Schur’s lemma shown later) so that
Z(SU(n)) ={e* "1 :r=0,...n -1} ~ Zy,, while Z(U(n)) = {€°1:0< a <27} ~U(1).

Note that SO(2) ~ U(1) since a general SO(2) matrix

sin@ cos6

(COSH _Smg), 0<f<2r, (1.105)

is in one to one correspondence with a general element of U(1),
el 0<h<2r. (1.106)

Topologically U(1) ~ St, the circle.

1.6.3 Symplectic

(iii) Sp(2n,R) and Sp(2n,C), symplectic 2n x 2n real or complex matrices satisfying
MT Jon M = Jop , (1.107)

where Js, is a 2n x 2n antisymmetric matrix with the standard form

56 0
0 01
Jon = -10 . . (1.108)

In this case M7 Jp, M is antisymmetric so that (1.107) provides n(2n - 1) conditions and
hence Sp(2n,R) has n(2n+1) parameters. For symplectic transformations there is an anti-
symmetric invariant form (v’,v) = —(v,v’) = v'T Jo,v so that (x,x) = 0. For an orthonormal
basis {e;} we may define J;; = (e;, €;).

The condition (1.107) requires det M =1 so there are no further restrictions as for O(n)
and U(n). To show this we define the Pfaffian® for 2n x 2n antisymmetric matrices A by

1
Pf(A) = Qn—n' 61'1”.1'2”141‘”'2 e Ai2n—1i2n s (1109)

8 Johann Friedrich Pfaff, 1765-1825, German.
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with €4, i,, the 2n-dimensional antisymmetric symbol, €12, = 1. The Pfaffian is essentially
the square root of the usual determinant since

det A = Pf(A)?, (1.110)

and it is easy to see that
Pf(Jo,) = 1. (1.111)

The critical property here is that

Pf(MTAM) = det M Pf(A) since &y iy, Miyj, --- M; =detMej, j,, - (1.112)

2nj2n

Applying (1.112) with A = Jy,, to the definition of symplectic matrices in (1.107) shows that
we must have det M = 1.

Since both +1 belong to Sp(2n,R) then the centre Z(Sp(2n,R)) ~ Zs.

For M = (‘é 2) € Sp(2,R) the condition (1.107) requires just ad —bc = 1 or det M = 1.
Hence Sp(2,R) ~ Si(2,R).

1.6.4 Quaternion Matrix Groups

Matrix groups can also be extended to quaternions where a n x n quaternionic matrix M
has the form
M=al+bi+cj+dk, a,b,c,d real nxn matrices, (1.113)

and the adjoint is
M=a"1-b"i-c"j-d"k. (1.114)

Matrix multiplication of non singular, or invertible, n x n quaternionic matrices defines
Gl(n,H) since quaternions obey the crucial associativity property.” The notion of a deter-
minant with the usual properties is problematic for quaternionic matrices but Si(n,H) can
be defined as the commutator group [Gi(n,H),GIl(n,H)]. A definition analogous to a de-
terminant due to Dieudonné'” is based on the quotient group G1(n, H)/[Gl(n,H), Gl(n,H)]
which is a one dimensional abelian group. This can be expressed, for M € Gl(n,H), in terms
of areal |M| >0, |[M| = |MK| = |KM]| for K € [Gl(n,H),Gl(n,H)], satisfying the group
properties | My Ma| = |M1||Ms|, where |M| = [M| and |rM]| = |r|*|M| for r € R. In general
|M| = 0 if and only if M is singular, so that there is a quaternionic column vector v such
that Mwv = 0, and there is no inverse.!* For M e Si(n,H) then |M| = 1 which is preserved

9The inverse is a little more complicated than the usual matrix inverse since quaternions do not com-

mute. A single non zero quaternion has an inverse. For M e GI(2,H) then writing M = (2%) =
(o 9) (5 5) (3er) with a#0and d' =d-ca™'b#0 then M~" = (1-a'v) (' 0 )(_ 1Y) is both a
right and left inverse for M. Alternatively for d + 0, M = (é bd{l ) ( %’ 2) ( d—llc (1)), a’ = a-bd ‘¢ leads to an

equivalent expression for M~*. These results can be generalised to larger square quaternionic matrices.

'%Jean Dieudonné, 1906-92, French. Founder member of Bourbaki.

"For M = (%) € GI(2,H) then [M| = |a||d - ca™'b| = |d||a - bd " ¢|. Note that if a > a+gqc, b—b+qd or
b—>b+aq,d— d+cq, q€H, which correspond to M - QM or M - MQ for Q = (é ‘11), |M| is invariant.
For |M1| =0 and |a| # 0, when it is necessary that d — ca™'b = 0, we can take for the zero eigenvalue vector
v= ( 0 )
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under matrix multiplication. While M € Gl(n,H) has 4n? real parameters, M ¢ Si(n,H)
has 4n? - 1.

For a single quaternion the group Q defined in (1.84) is isomorphic to SU(2). To show
this we relate the quaternions to 2 x 2 matrices according to

1-1=(39), i-1=(5%

7

). i=Jd=(9%), k->K=(27). (1.115)

Then

. . To+T1t X3+ T4t
q=xol+z1i+T0j+23k, < Q=( 0 3

—ZL‘3+ZL‘4i $0_$1i), 1‘0,1’1,$2,$3€R, (1.116)

ensures
g < 99, ¢ Q, ¢’ odetQ. (1.117)

Furthermore

JQ=0"J. (1.118)

Note that from (1.116) det Q = x2 + 212 + 292 + 232 = |¢|? so that SU(2) can be identified
with points on S3.

For any quaternion matrix M there is an associated 2n x 2n complex matrix M obtained
by replacing quaternions by 2 x 2 matrices as in (1.115)

MM, M->M, 1,1->1y,, 1,j-Jym = M =-DyMl,, (1.119)

where My My - MiMso, M~ - M1, With M as in (1.113)

Mz(_} ef) c=a+bi, f=c+di, an:(_;)l ]10”). (1.120)

With the usual notion of a determinant for complex matrices det M = |M?.

The unitary quaternion matrix group U(n, H) is defined by nxn matrices of quaternions
where for any M € U(n,H) with an associated adjoint M, defined as in (1.113) and (1.114),

MM =1,1, (1.121)

for 1,, the unit n x n matrix. From (1.116) U(1,H) ~ SU(2). A general quaternionic n xn
M then has 4n? parameters whereas U = MM = U is a hermitian quaternion matrix which
has n real diagonal elements and %n(n —1) independent off diagonal quaternionic numbers
giving n(2n-1) parameters altogether. Hence (1.121) provides n(2n—1) conditions so that
U(n,H) has n(2n + 1) parameters. The condition (1.121) requires |[M| = 1. From (1.116)
U(1,H) ~ SU(2). In this case under the map (1.119) M satisfies, since M* = (MT)7L,
satisfies (1.107) as well as MM =15, and so M € Sp(2n,C)nU(2n). These properties are
preserved under multiplication and define the group USp(2n) which is therefore isomorphic
to U(n,H). This group may also be denoted by Sp(n).
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1.6.5 Heisenberg Group

The Heisenberg!? group H is defined in terms of upper triangular 3 x 3 matrices

1 a c
A(a,b,c)=10 1 b|, a,bceR, (1.122)
0 0 1

where under matrix multiplication A(a,b,c)A(a,b’,¢") = A(a+d',b+b,c+c +ab') and
the inverse A(a,b,c)™t = A(-a,~b,—c + ab). This group is connected with the position
momentum commutation relations in quantum mechanics. The Heisenberg group is non
abelian and since A(a,b,c)A(a,b’,c')A(a,b,c)™t = A(0,0,c +ab’ —ba') then {A(0,0,¢)} ~R
forms its centre Z(H). Clearly {A(a,0,0)} ~ {A(0,b,0)} ~R are abelian subgroups. There
is a discrete infinite subgroup by restricting a, b, c € Z.

1.6.6 Compact and Non Compact

The matrix groups SO(n), SU(n) and U(n,H) are compact, which will be defined precisely
later but for the moment can be taken to mean that the natural paramete rs vary over a
finite range. On the other hand Gi(n,R), Si(n,R), as well as their complex counterparts,
are non compact. Any one dimensional continuous subgroup of a compact continuous group
must be isomorphic to U(1) while a non compact continuous group will have at least one
dimensional subgroups isomorphic to R. Sp(2n,R) is non compact, which is evident since
matrices of the form

coshf sinh@
sinhf cosh@

) , —00 <f<o0. (1.123)

belong to Sp(2,R) and form a one dimensional subgroup isomorphic to R. The Heisenberg
group is clearly non compact.

The group USp(2n) ~ U(n,H) is compact.

There are also various extensions of the orthogonal and unitary groups to non compact
groups which arise frequently in physics. Suppose ¢ is the diagonal (n+m) x (n+m) matrix

defined by
1, O
g= ( 0 —]lm) , (1.124)

then the pseudo-orthogonal groups O(n,m), and hence SO(n,m), are defined by real ma-
trices M such that
MigM=g. (1.125)

The invariant form in this case is (v/,v) = v'Tgv is no longer positive. Similarly we may
define U(n,m) and SU(n,m). It is easy to see that O(n,m) ~ O(m,n) and similarly
for other analogous cases. The parameter count for these groups is the same as for the
corresponding O(n+m) or U(n+m), SU(n+m). Note that matrices belonging to SO(1,1)
are just those given in (1.123).

12Werner Karl Heisenberg, 1901-76, German. Nobel prize 1932.
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2 Representations

In physical applications of groups representations play a crucial role. For any group G a
representation is a set of non singular (i.e. non zero determinant) square matrices {D(g)},
for all g € G, such that

D(g1)D(g2) = D(g192) , (2.1)
D(e)=1,
D(g™") =D(g)™",

where 1 denotes the unit matrix. If the matrices D(g) are n x n the representation has
dimension n. For each matrix group the definition of course provides a representation
which is termed the fundamental representation.

The representation is faithful if D(g1) # D(g2) for g1 # go. There is always a trivial
representation or singlet representation in which D(g) = 1 for all g. If the representation
is not faithful then there exist group elements h, not equal to e, where D(h) = 1. For all
such h then {h} = H and it is easy to see that H must be a subgroup of G, moreover it is
a normal subgroup.

For complex matrices the conjugate representation is defined by the matrices D(g) =
D(g)* since complex conjugation preserves matrix multiplication. The matrices (D(g)™*)7
also define a representation.

Since
det (D(g1)D(g2)) = det D(g1) det D(go2), detl=1, det D(g)™* = (det D(g))_1 , (2.4)

{det D(g)} form a one-dimensional representation of G which may be trivial and in general
is not faithful.

Two representations of the same dimension D(g) and D’(g) are equivalent if
D'(g)=8D(g)S™" forall geG, (2.5)

where D(g) — D'(g) is a similarity transformation.

For any finite group G = {g;} of order n = |G| we may define the dimension n regular
representation by considering the action of the group on itself

99; = Zngreg,ji(g)a (2.6)
J

where [Dyeg ji(g)] are representation matrices with a 1 in each column and row and with
all other elements zero. In general

5]'1'7 g=e,

2.7
0,7=1t, g#*e. 2.7)

Dreg,ji(g) = {
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As an example for D3 = {e, a, a®,b,ba, ba2}, where a® = b% = e, ab = ba?, then

001000 000100
090000 000007

Dreg(a)=| 000070 | Dreg(0)=1900000 (2.8)
000001 010000
000100 001000

A representation of dimension n acts on an associated n-dimensional vector space V,
the representation space. For any vector v € ¥V we may define a group transformation acting
on v by

v v =D(g)v. (2.9)

Transformations as in (2.5) correspond to a change of basis for V. A representation is
reducible if there is a subspace U c V, U + V), such that

D(g)ueU forall ueld, (2.10)

otherwise it is an irreducible representation or irrep. For a reducible representation we may
define a representation of lower dimension by restricting to the invariant subspace. More
explicitly with a suitable choice of basis we may write, corresponding to (2.10),

D(g) = (D((]g) ggg) for w= (g) , (2.11)

where the matrices ﬁ(g) form a representation of G. If, for any invariant subspace, we may
restrict the representation matrices to the form shown in (2.11) with B(g) = 0 for all g the
representation is completely reducible.

For an abelian group G all irreducible representations are one-dimensional since all
matrices D(g) commute for all g € G and they may be simultaneously diagonalised. For
the n-dimensional translation group 7, defined by n-dimensional vectors under addition
(with 0 as the unit), then for a representation it necessary, for a € R", a - D(a) satisfying
D(a1)D(ag) = D(ay + ag). Irreducible representations are all of the form D(a) = e*?, for
any n-vector b dual to a.

Representations need not be completely reducible, if {R} are n x n matrices forming a
group G and a is a n-component column vector then we may define a group in terms of
the matrices

R a
D(R,a) = (0 1) , (2.12)
with the group multiplication rule
D(Rl,al)D(RQ,CLQ) =D(R1R2,R1a2+a1), (2.13)

which has the abelian subgroup 7;, for R = 1. The group defined by (2.13) is then G x T,
with a® = Ra.

In general for a completely reducible representation the representation space V decom-
poses into a direct sum of invariant spaces U, which are not further reducible, ¥V ~ Eszlur,
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and hence there is a matrix S such that

D1(g) 0
sp(g)st=| © Ds(9) : (2.14)

Di(9)

and where D,(g) form irreducible representations for each r. This can be written as

k
D(g) ~ EPIDT(Q), (2.15)

Thus for R the representation given by the matrices D(g) and R, corresponding to the
irreducible representation matrices D, (g) then R is decomposed as

R=R1+---+Rk. (2.16)

If there are Ng inequivalent irreducible representations they may be labelled R,, r =
1,...ng, and then in general a particular irreducible representation R, may appear more
than once, with multiplicity m,., in the decomposition (2.16), and (2.15) can be reduced to
just

Ng
D(g)zejmrDr(g)> (2'17)

Representations of a finite group are always completely reducible since, as shown later, rep-
resentations can be shown to be equivalent to unitary representations formed from unitary
matrices. This is known as Maschke’s threorem.'3

There is always a trivial one dimensional representation R which is irreducible and is

given by
Di(g)=1 forall geQG. (2.18)
As an example from (2.8)
138888 130011
S
-1 5 -1
SDreg(a)S™ =[005100 | S Deg(®S=1000210 0 |
0000 s0 0000 0 -1
00000 s 0000-10
1 s 8§ —1 =8 =8 .
S‘lzﬁ %;;}17;*; , s=eMmB = 1(1-V310). (2.19)
1171179

In consequence this representation decomposes into two one-dimensional representations
and two equivalent two-dimensional ones.

13Heinrich Maschke, 1853-1908, German.
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2.1 Schur’s Lemmas

Two useful results, which follow almost directly from the definition of irreducibility, char-
acterising irreducible representations are:

Schur’s Lemmas.'* If Dy (g), D2(g) form two irreducible representations then (i)

S$Di(g) = Da(9)S, (2.20)
for all g requires that the two representation are equivalent or S = 0. Also (ii)

SD(g) = D(9)S, (2.21)

for all g for an irreducible representation D(g) then S o 1.

To prove (i) suppose Vi, Vs are the representation spaces corresponding to the repre-
sentations given by the matrices Di(g), D2(g), so that V; 3 V5. Then the image of S,

ImS = {v:v=Su,ue )V}, is an invariant subspace of Vs, D2(g)ImS = Im .S Ds(g), by
virtue of (2.20). Similarly the kernel of S, KerS = {u: Su=0,u € V;} forms an invariant
subspace of Vj, both sides of (2.20) giving zero. For both representations to be irreducible
we must have Im.S = Vs, Ker S = 0, so that S is invertible, det .S # 0, (this is only possible
if dimV, = dimV;). Since then Dy(g) = SD1(g)S™! for all g the two representations are
equivalent.

To prove (ii) suppose the eigenvectors of S with eigenvalue A span a space V). Applying
(2.21) to V) shows that D(g)V, are also eigenvectors of S with eigenvalue A so that D(g)V) c
V, and consequently V) is an invariant subspace unless V) =V and then S = \I.

To obtain (%i) it is necessary in general that V) is a complex vector space so that the
reduction to irreducible representations must allow for complex representations. For an
abelian group all matrices D(g) commute and can be simultaneously diagonalised so they
are reducible to one dimensional complex representations.

2.2 Induced Representations

A representation of a group G also gives a representation when restricted to a subgroup H.
If the representation for G is irreducible the restricted representation for H need not be.

Conversely for a subgroup H c G then it is possible to obtain representations of G in
terms of those for H by constructing the induced representation. Assume

v:D(h)v, heH, veV, (2.22)

with V the representation space for this representation of H. For finite groups the cosets
forming G/H may be labelled by an index ¢ so that for each coset we may choose an element
g; € GG such that all elements belonging to the i'th coset can be expressed as g;h for some

41ssai Schur, 1875-1941, Russian, worked in Germany, forced to leave in 1939 for Palestine.
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h € H. The choice of g; is arbitrary to the extent that we may let g; - g;h; for some fixed
h; € H. For any g € G then

99i = gjh for some heH, i,j=1,...,N, N=|G|/|H|. (2.23)

Assuming (2.23) determines h the induced representation is defined so that that under the
action of a group transformation g € G,

v Doy, = (gi), D = (g5 D(W)v). (2.24)

In (2.24) h depends on ¢ as well as g and v; € V; which is isomorphic to V for each i so
that the representation space for the induced representation is the N-fold tensor product
V8N The representation matrices for the induced representation are then given by N x N
matrices whose elements are D(h) for some h e H,

D(h), gj'ggi=heH,

i (2.25)
0, 9 'ggi ¢ H.

Dji(g) = {
To show that (2.24) is in accord with the group multiplication rule we consider a subsequent
transformation ¢’ so that

v; > D(h)v; > D(h")D(h)vi, = D(W'h)vx  for g'gi=gh’ = (9'9)gi=gxh'h. (2.26)
g g

The dimension of the induced representation of G is then |G|/|H|dim Ry with Ry the
representation defined by {D(h)}.

If H = {e}, forming a trivial subgroup of G, and D(h) — 1, the induced representation
is identical with the regular representation for finite groups. This shows that the induced
representation is not in general irreducible.

As a simple example we consider G = D,, generated by elements a,b with a” = b% =

e,ab=ba™'. H is chosen to be the abelian subgroup Z, = {a" : 7 =0,...,n - 1}. This has
one-dimensional representations labelled by k=0,1,...,n —1 defined by

2mki

v>en . (2.27)

With this choice for H there are two cosets belonging to D,,/Z,, labelled by i = 1,2 and we
may take g1 = e, go =b. Then for v; = (e,v) transforming as in (2.27) then with ve = (b, v)
(2.24) requires, using ab = ba™!,

2mki _ 2mki
(vi,v2) > (™ vi,e 7 n va) = (v1,v2) Ag, (v1,v2) e (v2,v1) = (v1,v2) B,  (2.28)

for 2 x 2 complex matrices Ay, B,

27kt
e n 0 01
Ak—( 0 6_2,;;“) , B—(1 0) , (2.29)

which satisfy A" =1, B?=1, A;,B=BA;™ " and so give a two dimensional representation
of D,, for each k. By considering Ay, - BAB it is clear that the representation for k - n—k
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is equivalent to that in (2.29). For n even we may take k = 1,...,(n —2)/2, for n odd
kE=1,...,(n-1)/2 to give inequivalent two dimensional irreducible representations. If
k=01in (2.29) A =1 then the matrix B is reducible so that there are two one dimensional
representations corresponding to taking b — +1. For n even then taking k =n/2 and A = -1
there are similarly two more one dimensional representations. The representations are then
given by, for n odd,

Rii: (a",d"d) - (1,1) , r=0,...,n-1,

5

Riz: (a",a"b) - (1,-1) , r=0,....,n-1,

)

Rop: (a",a’b) — (AY,AYB) , r=0,....n-1, k=1,...,4(n-1), (2.30)

)

and for n even

Rl,l : (ar,arb)
RLQ : (CLT,CLTb)

(1,1) , r=0,...,n-1,
(1,-1) , r=0,...,n-1,
Riz: (a",a"d) (-nH-,-n" , r=0,...,n-1,
Ria: (a",a"d) (-H",--1)" , r=0,...,n-1

Rop: (a",d’b) — (AL, AMB) , r=0,...,n-1, k=1,...,3(n-1), (2.31)

)

Lol

)

The number of representations match the number of conjugacy classes in (1.58). Corre-
sponding to (2.29) there is an equivalent basis

2wk . 2wk
_ cos =— —sIln=-— _ 1 O
RA,R = n nol RBR'= , 2.32
g (sin 2k o 22k ) (0 —1) (2:32)

where R= 5 (4 1), R™' = R,

A very similar construction works for the dicyclic group Qu, as defined in (1.85). This
is similar to Ds,, where we take a®" = e, ab=ba"" but now a” = b>. Thus

ki
(1)1,’02):(677:1@1,6_#:2’02):(Ul,UQ)Ak, Ak=(e(; _(T)rkz) s /{:0,1,...,72. (2.33)
e n

Hence a” gives (v1,v2) = (=1)¥(v1,v2) so that instead of (2.28) for the action of b we may
require

(1)1,1)2)7: ((—1)k02,vl):(1}1,1}2)3k, Bk:((—?)k (1)) y k:O,...,n. (2.34)

For k=0, Ag=1 and By~ ({ %), for k=n, A, =-1 and B, ~ (§ %), n even, B, ~ ({ %),
n odd. Hence there are four one dimensional irreducible representations and n — 1 two
dimensional ones. For k =1 the representation (2.33) and (2.34) is equivalent to using the
quaternion representation in (1.115) in (1.85). The representations follow a similar pattern
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to the dihedral case, for n odd

Rip: (a",a"b) - (1,1) , r=0,...,2n-1,

Riz: (a",a"b) - (1,-1) , r=0,...,.2n-1,

Riz: (a",a"b) - ((-1)",(-1D") , r=0,...,2n-1,

Ria: (a",a"b) - ((-1)",-(-1)"i) , r=0,....2n-1,

Rop: (a",a"b) - (A, AyBy) , r=0,....2n-1, k=1,...,n-1, (2.35)
and for n even

Rii: (a",a"b) - (1,1) , r=0,....2n-1,

Riz: (a",a"b) - (1,-1) , r=0,....2n-1,

Risz: (a",a"b) - ((-1)",(-1)") , r=0,...,2n-1,

Ria: (a",a"b) - ((-1)",-(-1)") , r=0,...,2n-1,

Rop: (a",a"d) - (A, A{By) , r=0,....2n-1, k=1,...,n-1. (2.36)

For k even the representations can be brought to a real form by a similarity transformation
as in (2.32).

2.3 Unitary Representations
For application in quantum mechanics we are almost always interested in unitary represen-
tations where the matrices are require to satisfy
-1 -1
D(9)'=D(g7") = D(9)™". (2.37)

For such representation then the usual scalar product on V is invariant, for transformations
asin (2.9) 1191099 = vyuy. I U is an invariant subspace then the orthogonal subspace U, , as
defined by the scalar product, is also an invariant subspace. Hence unitary representations
are always completely reducible.

Theorem: For a finite group all representations are equivalent to unitary representations.

To show this define
S=D(9:)'D(g,). (2.38)

where the sum is over all elements of the group G = {g;}. As a consequence of (1.7)
SD(9)™' =SD(g™) = 3. D(9:)' D(gig™)
= ;D(Qig)TD(gi)
- D(9)! ¥ D(9)'D(g) = D(9)'S. (2:39)
using that D(g) form a representation and also (AB)" = BTAT. Hence if we define (v, vs) =
v17Svy then we have (v, D(g™ )va) = (D(g)v1,v2) or (v19,v29) = (v1,v2). With respect to

this scalar product D(g) is unitary (or we may define D'(g) = S%D(g)S% and then show
D'(g)'D'(9) = 1).
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2.3.1 Infinite Dimensional Unitary Representations

Representations can be infinite dimensional when they are typically expressed in the terms of
the group action on spaces of functions. Such representations arise when considering unitary
representations of non compact groups. As an example we consider unitary representations
for the Heisenberg group as define by products of matrices of the form (1.122). Acting
on complex square integrable functions {f} on R belonging to L? we define an action
[ = Tape)f, for a,b,c real, by

Tapey f(2) =P f(z +a). (2.40)

It is an exercise to check this satisfies the group multiplication rules and that this forms a
unitary representation.

2.3.2 Real and Pseudo-Real Representations

For any unitary complex representation the conjugate representation may be equivalent so
that
D(g9)*=CD(g)C™' forall geG. (2.41)

Assuming the representation is unitary so that D(g)* = D(g)™'7 then using (2.41) and its
transpose for D(g)™*

c'Tcp(g)ccT=D(g) = [D(g),c'cT]=0. (2.42)
For an irreducible representation Schur’s lemma requires
clct=a1 = C"=aC = C=aC" = o*=1. (2.43)

Hence o = +1. For o = 1 there is an S such that ST C'S =1 and then S™'D(g)S = D'(g) is
a real representation. Otherwise C7 = —C' and the representation is pseudo-real. For C to
be invertible it must be even dimensional and it is then reducible to the form (1.108).

A prescription for C is obtained by taking
C= ZD(g,-)TU D(g:), (2.44)

for arbitrary U since then, using (1.7) again,

CD(9) = ¥ Dgig™) U D(gi) = D(g) " C. (2.45)

Thus for real, pseudo-real representations C7 = +C so that

> D(9)"UD(g:) =+, D(9:)"U'D(9:) = 3 Drs(9:)Duv(9i) = + 3. Dus(9:) Dro(97) -

(2.46)
For a complex representation there can be no matrix C' as defined in (2.44) for any U. This
then requires in this case

>~ Drs(9) Duv(g:) = 0. (2.47)
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For the two dimensional representation of the quaternion groups considered in 1.5 de-
fined by (1.115) then ¢ - @, ¢ > Q" = Q7' so that the representation is unitary and also
irreducible since the only 2 x 2 matrix commuting with I,.J, K is proportional to 1. Also
as J(I,J,K)J = (I",JT,KT) then Q satisfies (2.41) with C - J = —JT. Hence these
representations are pseudo-real.

In general any pseudo-real representation can be written in terms of matrices of quater-
nions, with the quaternions having real coefficients.

2.4 Orthogonality Relations

Schur’s lemmas have an important consequence in that the matrices for irreducible repre-
sentations obey an orthogonality relation. To derive this we define

Sia) = G 2 = 2 D) (67D (90) (2.48)

where D(R) (g),D(R,)(g) are the matrices corresponding to the irreducible representation
R,R'. Then

SRR DR gy = L Y DG (997 YD (gi) = DT (9) SET

rt,uv |G| ts,uv

for any g € G. The proof of (2.49) follows essentially since {g;} = {g;g}. Schur’s lemmas
then requires that Sﬁfuf ) - 0 unless R’ = R when Sﬁfuﬁ” must be proportional to §,s and

also 0,,. Hence we must have

' 1
Sﬁ;zuq?) = % (SR’R Ors 5uva (250)

where ng = dimR is the dimension of the representation R. The constant in (2.50) is

determined by considering Sg} UE) D(R)(e) Ors-

2.5 Characters

For any representation R the character is defined by

x=(g) = tr(D®(g)). (2.51)

Since traces are unchanged under cyclic permutations xz(g'g9’ ') = x=(g) so that the
character depends only on the conjugacy classes of each element. Hence we may write
x(g:) = x(Cs) for any g; € Cs where for Ny, different conjugacy classes in G, s = 1,..., Nepar-
With previous conventions in (1.53) for g; € Cs, x(g:™*) = x(Cs). Similarly the character is
unchanged when calculated for any representations related by an equivalence transformation
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as in (2.5). Since for a finite group any representation is equivalent to a unitary one we
must also have

xr(g) =xr(9)* or xr(Cs)=xr(Cs)". (2.52)

For real or pseudo-real representations due to (2.41) characters are real. If the character is
complex then yzr* = xygr’ for R’ # R the conjugate representation and necessarily there are
group elements such that C(g) # C(g™'). As a special case

xr(e) =trr(l) =dimR =ng . (2.53)

For D(R)(g) equivalent to a unitary representation, as is the case for any finite group,
then, since D™ (g) has ng eigenvalues of modulus one, |xz (¢)| < ng and |xr(g)| = ng > 1
only for D(R)(g) = +1,,. For any direct product group G x Gy then xag,xa,((91,92)) =

XG1 (gl) XGo (92)'
For the regular representation defined by (2.6) then by (2.7)

Xreg(€) =G|, Xreg(9) =0, g#e. (2.54)

For two representations R, R’ there is a scalar product for the associated characters

defined by

Nenhar

(xR XR) = > xri(9) xr(9) = = Z xr(Cs)* ds xr(Cs), ds=dimC,. (2.55)
|G| 9eC: |G|

The characters for the irreducible representations play a crucial role. For irreducible
representations {R, : v = 1,..., Ng} the corresponding characters x,(g) = xr,(g). For
the singlet representation (2.18) x1(g) = 1. As a consequence of the orthogonality relation
for irreducible representations (2.50) then using (2.52) for two irreducible representations
R=R,, R =R, this reduces to

Nchar

{(xXr, Xr) = Z xr(9) xr(9) = Z X (Cs)* ds Xr(Cs) = b1y (2.56)
IGI o) |
Equivalently
s = Xr(Cs), Dy =dsdsy = XDX'=|G|1,,. (2.57)

where X is a Ng x Nepoy matrix and D is a diagonal Nepay X Nepar matrix. (2.57) requires
the number of irreducible representations N¢g < Ncpar. From (2.18) and (2.53)

x1(Cs) =1 all s, xr(e) =dimR, =n, . (2.58)

For any f(g) satisfying f(g) = f(g gg'™b) for all ¢’ € G, so that f(g) = f(Cs) for all
g € Cs, we may then define (f, xr) = Ch‘“ f(Cs)*ds xr(Cs)/|G], as in (2.56). An important

result, demonstrated later, is

(fixr)=0 forall r = f(g)=0. (2.59)

36



If Ng > Ncpar there is a non zero vector such that Y, v, X,s = 0. Since this contradicts
(2.59) we must have
N¢g = Nenar - (2.60)

Hence X is a non singular square matrix and using |G| X~! = D XT equivalently
, Ng
X'x=|G| D™, Z Xr(Cs)xr(Cs)* = |G/ds Ot . (2.61)

For s = s’ =1 then C; = {e} is the conjugacy class containing just the identity by itself,
di =1, so that

Ng
3 n? =Gl (2.62)
r=1

This plays an important role in constraining irreducible representations for finite groups.
As an illustration for the dihedral group D,, then Z(n D292 L 141+1+1=2nfor n even

and Z](::Lll)m 22 +1+1=2n for n odd. For Qg, = 2D,, then (n—-1)2%+4x 1 =4n.
Characters distinguish the different possible representations. From (2.46) and (2.47),

setting s = u, r = v and summing, for an irreducible such representation (note that if g, g’ € Cs
then g2, ¢g'% € Cy for some Cyr)

{(Xr» Xr) 1 real
Frs = ZXT(Q —(xr Xxr) = 1-1 pseudo-real . (2.63)
|G| geG
0 0 complex

This formula characterising the different possibilities for representations was first obtained
jointly by Frobenius'® and Schur in 1906 and is sometimes referred to as the Frobenius-Schur
indicator.

Using the orthogonality results then for an arbitrary representation R then decomposing
into irreducible representations as in (2.16)

Ng
xr(9) = Zlm xr(9) (2.64)

and the multiplicity of the irreducible representation R, is then given by

My = (Xrs XR) - (2.65)

Applying this to the regular representation which is completely reducible

Ng Ng
Dreg(g) = @ Myreg,r DRT (g) ) Xreg(g) = Z Myreg,r Xr(g) ) (2-66)
r=1 r=1

and using (2.52) and (2.54)

1
Myegr = {(Xrs Xreg) = _| xr(e) Xreg(e) =Ny (2.67)

|G

Y5Ferdinand Georg Frobenius, 1849-1917, German. A pioneer of representation theory.
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We also then have
Ng Ng 9
|G| = Xreg(e) = Z Myreg,r Xr(e) = Z nr, (268)
r=1 r=1
which reproduces (2.62).

To prove (2.59) we define for any representation R

Ir =

|G| >~ f(9:)" Dr(g:)- (2.69)

Using the group property and f(ggig™') = f(gi) it is easy to see that
Dr(g9)' Tr Dr(9) =Tr or Tr Dr(g) = Dr(g)Tr forall g. (2.70)
Applying this for the irreducible representation R, and using Schur’s lemma we must have
TR, =cl,,, (2.71)

with 1,, the identity matrix in this representation. However

(f.xr) == 2 f(90)" xw(g:) = tr(Tr) = 0, (2.72)

IGI

by virtue of the assumption (2.59). Hence in (2.71) ¢ = 0 so that Tk, = 0 for all irreducible
representations. Since the regular representation can be decomposed into irreducible rep-
resentations as in (2.66)

TR =0 = > f(9:)"9:=0, (2.73)
i
from the definition (2.6) since g; = ¥; gj Dreg,jk (9:) gi ! Since all g; are independent this is
only possible if f(g;) =0 for all i.

For an induced representation as in (2.25) if for the subgroup representation
x(h) =tx(D(h)), (2.74)

then

-1
Xinduced rep.(g) = Z X(gi gg’i) ‘gi’lggiEH . (275)
i

If this is applied to the case when H = {e}, giving the regular representation, we get (2.54).

2.5.1 Further Constraints on Dimensions of Irreducible Representations

The dimensions of irreducible representations, n,., r =1,..., Ng, for finite groups are con-
strained by (2.62). A further condition is that n, must divide |G|. This is somewhat non
trivial to prove.

For any representation R and conjugacy class C we may define

R =5 DR(g). (2.76)
geC
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Since gCg~' = C then
DR () TRDR () =TcR = [1cR, DR (g)]=0 forall geG. (2.77)
By Schur’s lemma if R is irreducible T¢® is proportional to the identity so that

RdC

Tc X’R(C) 1y, (2.78)

where the coefficient is determine by taking the trace. Furthermore summing over the
various conjugacy classes Cs and using the orthogonality of characters

G GJ?
RR = 2' | Te KT ™ = L;Q Ty - (2.79)

S

As a consequence of (1.57)

dy
TCSIRT TCth = chtu TCHRT = XT(CS) XT‘(Ct) =Ny Z d dt Cst XU(C ) (280)
so that
1 Gl .
> = xr(C)xr(Cxr (Ca) = - o™ (2.81)

. Ny ds dt

Showing that n, divides |G| depends on applying these results to the regular representa-
tion. From (2.66) and (2.67) this is expressed as a direct sum over irreducible representations

Dreg(g) =~ @fiﬁ nr Dr,(g). Then

reg Cc= Z Dreg(g) é Ny ( X?"(C) ]lnR) (2‘82)

geC

and

’f‘

G G?
reg Z| | reng regCS @nr(| | nr)a (283)

using orthogonality of characters again. The eigenvalues of R,es are then |G[?/n,2, which
has multiplicity n, and are necessarily rational. The eigenvalues are determined by the
roots of det(A 1| — Rreg) = 0. Since |G|/d; are integers the elements of Ry are necessarily
integers as Dieg(g) has elements which are only 1 or 0. Hence det(A g — Ryeg) can be
expanded as a polynomial in A\ with integer coefficients and leading term MGl The rational
root theorem states that in this situation any root which is rational must an integer which is
a factor of det(Ryeg).'® Hence (|G|/n,)? and therefore, since integer square roots are either

integers or irrational, |G|/n, are integers for all r.

YFor a polynomial P(A) = A" + @n-1 A" + -+ + ap with a; integers then for a rational root P(p/q) = 0
where p,q are integers with no common factors. The equation determining this root can be rewritten as
q(an-1p™ "+ +aog™™) = —p". Since ¢ then divides p™ and does not contain p as a factor this forces ¢ = 1.
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2.6 Tensor Products

If V1,V, are representation spaces for representations Ri,Ro, given by matrices Di(g),
Ds(g), for a group G then we may define a tensor product representation Ry x Ro in terms
of the direct product of the representation matrices D(g) = D1(g) ® D2(g) acting on the
tensor product space Vi ® Vo where D(g)v = ¥, s ars D1(g)virD2(g)vas. Since dimV =
dimV; dim Vs the tensor product matrices have dimensions which are the products of the
dimensions of the matrices forming the tensor product. If D1(g), D2(g) are unitary then so

is D(g).

In general the tensor product representation R x Rs for two representations Ry, Ro is
reducible and may be decomposed into irreducible ones. If the irreducible representations
are listed as {R,} then in general for the product of any two irreducible representations

RpxRg=Rg*xRp= anq,r R, (2.84)

where ny, , are integers, which may be zero, and np,, > 1 if the representation R, occurs
more than once. For non finite groups there are infinitely many irreducible representations
but the sum in (2.84) is finite for finite dimensional representations. The trace of a tensor
product of matrices is the product of the traces of each individual matrix, in consequence
tryp@,vq(D(RP)(g) ® D(Rq)(g)) = try, (D(RP)(g))trvq (D(Rq)(g)), so that, in terms of the
characters x,(g) = try, (D(R’“)(g))7 (2.84) is equivalent to

Xp(g)Xq(g) = anq,r Xr(g) . (2'85)

Using (2.56) the coefficients ny,,, can be determined by

oar = i 20 (0) 00Xe(9) = 5 T v CpCoxa(Ce). (250)

The result (2.84) is exactly equivalent to the decomposition of the associated represen-
tation spaces, with the same expansion for V, ® V, into a direct sum of irreducible spaces
Vr. If Ry, ® Ry contains the trivial or singlet representation then it is possible to con-
struct a scalar product (v,v’) between vectors v € V,,v" € V, which is invariant under group
transformations, (DRr)(g)v, DRa) (g)v') = (v,v").

2.6.1 Symmetric and Antisymmetric Products

The tensor product of vector spaces V., r = 1,...,n where V;,V; ~ V for all i,j can be
decomposed into representation spaces for the permutation group S,. The simplest cases
are the one dimensional totaily symmetric or antisymmetric representations of S, which
can be denoted by

VIV =(Ve--e))

/\”Vz(V@---@V)antisym,

, dimV"V = LdimV(dimV +1)...(dimV +n-1),
sym n!

dim A"V = L dimV(dimV -1)...(dimV-n+1). (2.87)
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V™V is also commonly denoted as Sym”™V. The action of permutations commutes with
the group action on V so that V"V and A"V both form representation spaces, in general
reducible, for the group G with a matrix representation D(g) of dimension dim). The
representation matrices have the form, for the symmetric, antisymmetric cases respectively,

D(m\sl (Q)Drz\sz (g) rn)sn (g) D[rl\sl (g)Drz\SQ (g) rn Sn (g) (288)

involving a sum over n! permutations o € S,.
The corresponding characters

Xvm (g) = D(r1|r1 (g)Dr2|7"2 (g) s Drn)rn (g)
Xam (g) = D[r1|r1 (g) ra|re (g) Tn n (g) (289)
can be reduced to the characters x(g) = tr D(g) using the decomposition of any permutation

o into cycles. Thus for a cycle decomposition o = [p1,p2,...,pr], 2i1 Pi =7, then one such
permutation of indices r1,79,...,r, generates a contribution of the form

Do(rl)rl (g)DU(T‘z)T'Q (g) s DO’(Tn)Tn (g)‘a(rl .

st )= (1100 Tpy Y(Tpy+1--Tpy 4pg ) (Prmprt1--7n)
=x(¢") x(g”) - x(g"). (2.90)

Any permutation with the same cycle decomposition generates an identical expression so
that summing over all possible cycles (2.89) becomes

NAOEE DD Y s Nipi(n)me Go)] q x(g" )%,

r=171,52,...0r21 p1>p2>...pr21

(g =5 3 Y Onsr s N[pl(jl),.‘.,pr(jr)](_1)Ziji(pi71) [T x(g")",

r=1j1,j2,...Jr21 p1>p2>...pr21 i=1
(2.91)

with the numbers for j; p;-cycles in each cycle decomposition given by (1.22). Results for
xv2(9), xva(g) are just as in (1.70) and (1.71) is equivalent to the result for dim V"V in
(2.87). Similarly xa2(g), xa3(g) are essentially of the form in (1.73) so that

Yev = 3 (o (9)” £ 0 (67))

v = L (xun (9)” £ 3 xun (9)x0n (97) + 2 X0 (7)) (2.92)

A2pn

2.7 Character Tables

Knowing the irreducible representations the corresponding characters can readily be com-
puted and can be represented as tables composed of the elements of the square matrix
X.

For abelian groups the irreducible representations are one dimensional as are also the
characters which each correspond to a single group element. For Z,, or equivalently C,,
defined by {a" : a" = e}, we can take

XkT:Xk(aT):ezkrm/", k,r=0,1,...,n-1, (2.93)
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where k labels the representation and r the conjugacy class. It is easy to verify that
XXT=N1py. The character table is just

Zn ‘ Cl,r fFS

Rik ‘ e2krmifn =, %n(n even), 0 otherwise

k,r=0,...,n-1. (2.94)

For the dihedral group D,, the conjugacy classes are listed in (1.58) and the irreducible
representations in (2.30) and (2.31) with (2.29). The character tables are then, for n odd,

D,, n odd ‘ C1 Co,r Cn Frs
Rii | 1 1 1 1 1
Rus ) . _1 1 kyr=1,...,5(n-1), (2.95)
Ra 2 2cos2krm/n 0 1
where x20(C) = x1,1(C) + x1,2(C). For n even,
D, neven | C11 Ci2 Cor C%n’l C%n,2 Frs
Ria 1 1 1 1 1 1
Ris 1 1 1 1 -1 1
Rus N 1) ) 1 B k‘,rzl,...,%(n—Q).
Ri4 1 (-2 (-1)" -1 1 1
Rok 2 2(-1)* 2cos2krm/n 0 0 1

(2.96)
In this case x2,0(C) = x1,1(C)+x1,2(C) and x2,,/2(C) = x1,3(C) +x1,4(C). The representations
are all real.

For the dicyclic groups the conjugacy classes are given in (1.87) and irreducible repre-
sentations in (2.35) and (2.36) with (2.33) and (2.34). In this case

Qunmnodd | Cip Cip Co,r Cni  Cnp2 Frs
Ri1 1 1 1 11 1
Ris 1 1 1 -1 -1 1
, ) , kyr=1,...,n-1, (2.97)
R173 1 -1 (—1)T 7 -1 0
Ri4 1 -1 -1 - 0
Rok 2 2(-1)* 2coskrm/n 0 0 (-1)k
and
Qunneven | C11  Cip Co,r Chq  Cpp2 Frs
Rii 1 1 1 11 1
Rio 1 1 1 -1 -1 1
, kyr=1,...,n-1. (2.98)
Ris 1 1 (-1)" 1 -1 1
Ria 1 1 (-7 -1 1 1
Rok 2 2(-1)* 2coskrm/n 0 0 (-1)k
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For both n even and odd x20(C) = x1,1(C) + x1,2(C), x2n(C) = x1,3(C) + x1,4(C). The
representations Roj for n > 2 and k odd are pseudo real. For n = 1 dropping the Ca,
column and Ry row the character table is identical to that for Zj.

These character tables satisfy the required orthogonality conditions.

2.8 Molien Series

A nice application of the results for characters is a formula due to Molien.'” Suppose a
group GG acts on a representation space V", of dimension n, so that for z € V" and g € G

there is a linear action x — gz. In terms of coordinates x4, s =1,...,n this becomes a nxn
dimensional representation of G given by
(g2)s = Xy 2 Dis(g) - (2.99)

An important question is then to determine possible G invariant homogeneous polynomials
of degree p, P(Ax) = NPP(x), P(gx) = P(z). Let m, be the number of such invariant
polynomials. Then there is a generating function

Ma(V't) = S myt? = 1 . 1/ det (1-1D(g)), (2.100)
p>0 |G| geG

which is the Molien series.

The determinant in (2.100) can be expanded

1/det (1-tD(g))=exp(-trin(L-tD(g)) = exp( > gtrD(g)m)

m>1

i m n
= exp( Z E Xyn(g )) = PE(t)g;XVn) = 1 + X]}n (g) + Z U vavn(g)a (2101)

m>1 m>2

where the plethystic exponential is defined in (1.69) and Xxymya(g) = V™xyn(g) is the
character for the representation obtained from {D(g)} acting on the m-fold symmetric
tensor product space V"V as given in (2.91). As a result (2.100) can be expressed as

LS PE(,g:x0) - (2.102)

geG

To verify this result (2.100) we consider all possible homogeneous polynomials of degree
p. There are

(n) _F(n+p)_ 1, p=0
"p = T'(n) |n(n+1)...(n+p-1), p>1"

such polynomials (here (n), is the Pochhammer symbol). A basis of degree p polynomials
{Pua(z):a=1,...,Np} defines a Np-dimensional representation of G

Palgx) = £57 Ps(x) Dpalg) - (2.104)

'"Theodor Georg Andreas Molien, 1861-1941, Baltic German, Russian nationality.

1
Ny =5y, (2.103)
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The representation {D(g)} is formed from a p-fold symmetrised tensor product of the
representation {D(g)} and we must have

Eigenvalues D(g) = {X\a(g) :a=1,...,n}
= EigenvaluesD(g) = {171 Xa(9)™ : da 2 0, X7, dy = p} . (2.105)

There are NN, possible choices for {d,} so that the number of eigenvalues is equal to the
dimension of the representation. For a particular D(g) then the corresponding character is
obtained by summing over all the eigenvalues

x(9) = tr1(D(9)) =TTy Says0 Xa(9)™ 05, dop- (2.106)

The representation {D(g)} can be decomposed by using characters

xp(9) =T§Gs,pxs(g), asp == 2, Xs(9) xp(9)- (2.107)
i= |G’ geG

Hence now

> aspt? > xs(g > Z (t2a(9))™ 65, du.p
|G| 250 do30

11
p>0 geG a=1
Ly ﬁ (00" = g X o0’ H( 1-th(9)
|G| geG a=1 dg>0 |G| geG
|G| g; xs(g9)* 1/det —tD(g)) (2.108)

The number of invariant polynomials is equal to the number of singlet representations
contained in the decomposition of {D(g)} so that m, = a;,. For the trivial singlet repre-
sentation x1(g) = 1. In this case (2.108) reduces to (2.100).

2.8.1 Anticommuting Molien Series

From a physics perspective it is also interesting to consider invariants under the group action
of G on a n-dimensional Grassmanian manifold M" which is defined in terms of anticom-
muting coordinates 6 = (01,60, ...,6,) with 0;0;, = —6,0,. The group action is identical to
(2.99). A basis of degree p polynomials in 6, P, (0) satisfying (2.104) with z - # may also
be constructed but now NV, = (Z) and we most have p < n, higher degree polynomials vanish.
If v,(0), linear in 6, is an eigenvector of D(g) with eigenvalues A\,, a = 1,...,n then the
eigenvectors of D(g) are just [17.; va(0)% with d, = 0,1, since v,(0)? = 0, and ¥, dy = p
Hence

Eigenvalues D(g) = {H (@) i dy =0,1, X" dy = p} (2.109)

and instead of (2.106)

xp(9) = tr(D(9)) = TTo1 Thozo Aa(9)™ 05, du.p - (2.110)
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The decomposition of xp(g) into irreducible representations remains as in (2.107) and

stvp |G| Z Xs(g) H Z Z (t)‘ (g ) aézada,P

p=0 geG a= 1p>0d =0
! > xs(9)* H Z (tha(g))™ > xs(9)* H (L+tXa(9))
‘G‘ geG a=1 dq=0 ’G’ geG
> xs(9)" det (L+¢D(g)). (2.111)
|G| geG

The number of invariant polynomials of degree p is m, = a1, and the generating function
becomes now
Me(M",t) = > i, t? = — > det (1 +tD(g)), (2.112)
p>0 |G| geG
The first order contribution in and expansion in ¢, determining the number of linear invari-
ants, is the same as in (2.100) and is given by ¥, x(g) which will be zero for an irreducible
representation. In general (2.112) is a polynomial of degree n.

In an analogous fashion to (2.101)

det (]l + tD(g)) = exp( Z (—1)m1% Xyn(gm))

m21

=PEf(t,g:Xpn) =1+ Xpn(9) + 2 U Xpmpn(9) (2.113)

m>2

With X \mym (g) = A™xyn(g) the character for the representation acting on the m-fold anti-
symmetric tensor product space (V" ® -+ ® V") antisym. -

2.8.2 Examples of Molien Series

As a first example we consider Z,, which is generated by a” = e. Acting on R" there is a cor-
responding action given by cyclic permutations of the coordinates (z1,z2,...,Tp-1,%n) =
(x2,3,...,2n,21). This is just an n-cycle in the group of all permutations S,,. The asso-
ciated n x n representation matrix A,, where A, = 1,,, is then of the form

0 01
1 00
Av=los0 7001 (2.114)

In general

det (L-tA,")=(1- ™)™ for m, m|n, the smallest integer such that rm =0 mod n.

(2.115)

For r =1, m = n this can be worked out directly. Other cases can be found by generalising

results such as A2 ~ Ay ® Ay A ~ A3® A3, Ag® ~ Ay ® Ay ® Ay together with det(A® B) =
det A det B.

45



A special case of the Molien formula for this case is

1 1 n-1 .
MZ"(Rn’t):ﬁ((l—t)" + 1—t")’ n prime. (2.116)

This representation is reducible. Restricting to just the one dimensional irreducible repre-
sentation

My, (C,t) = % ), ! ! (2.117)

rzol—exp(%)t: 1—tn’

The summation can be calculated by expanding in ¢ and using Zf;ol exp(@) =n0gpn for
p=0,1,2,.... For z € C the invariants are just z'™, n =1,2,... which are just products of
a single fundamental invariant z". For n = 2 we may restrict C to R.

Other general results are obtained by considering the two dimensional representation of
2m gy 2w
the cyclic group C;, generated by the real 2x2 rotation matrix A = (COS g M ) satisfying

sin =& cos =&
n n

A" = 1,. Each element has its own conjugacy class and the Molien formula gives'®

n-1 1 B 1+t"
"01-2cos Tt +12  (1-t2)(1-t")’

M, (R?,t) = % 3 (2.118)

For (z,y) € R? expanding (2.118) in powers of ¢ then gives the number of invariants under
the action of C), on z,y. These can all be expressed in terms of sums and products of a
finite number of fundamental invariants. There are two primary invariants p; = 22 +y?, ps =
Re(x +iy)™ which correspond to the factors 1 —¢? and 1 —t" in the denominator. There is
also a secondary invariant ¢ = Im(x +iy)"™. For n = 2, py = 22 — y? and ¢ = 2zy. Both py
and ¢ are invariant under x +iy — e2m/ "i(z+iy) but ¢® = pi" - p. Of course the role of po
and g can be interchanged. Any invariant is then obtained by sums and products of pi, ps
together also with terms linear in q.

For the dihedral group, with the conjugacy classes in (1.58) and the representation given
by (2.29) or (2.32) for k =1, the Molien formula becomes

1
1 1 1 gn-1 1

) w(Co ¥ mor F e Y2 TaemtmaE)  even,

Mp (R t) = X " (2.119)
" L(;+L+QZE(H)+) dd
2n\ (1-t)2 * 1-t2 r=1 1-2cos 22X 442 /7 v odd.
In either case'® 1

MDn(R2,t) = (2.120)

(1-t2)(1-tn)"

"*Expanding in ¢ the sum becomes L Y720 5 7" exp(%) =32 o Ygs0.ns 2" which is read-
ily evaluated.
9For n = 2m the basic sum can be reduced to

ﬁ ZZO 1-2 Cosl% t+t2 = ﬁ Z tp+q2:10( eXp( (P*‘ir)l”r - ) + eXp(7 (p72TW - ))

P,9=0 oo
DR CYEIC VORIV M
p,q=0 s=—o0 ¢>0,-2ms

which is then straightforward.
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In the real basis (2.32) and, for (z,y) € R?, p1, p2 as in the Zy case are still invariants but
q is no longer since it changes sign under y — —y.

A further illustrative example is given by the dicyclic, or binary dihedral, group Qg.
The conjugacy classes are given in (1.87) and a two dimensional irreducible complex repre-
sentation is given in (2.33) and (2.34) setting k = 1. For this representation det(1 -t A") =
1-2cos™™ ¢+t det(l -t A"B) =1+1?, and

1 1 2n n-1 1
Mq, (C%t) = +2
Qan ( ) = ((1 1)2 (1+t)2+1+t2 ZT=11—2cos%rt+t2 )
1+t2n+2
(L=t (1 —t2n) "

(2.121)

There are two primary invariants, for (z,%) € C2 these are p1 = 22y?, po = 22 +y*", and
also q = zy(2®™ - 3?") is a secondary invariant since ¢ = py p* — 4 pg "” All invariants are
formed from sums of products of p1, ps together with similar expressions linear in q.

There are more invariants when considering the symmetric group S, acting on the R”
by permuting the coordinates (x1,22,...,2n) = (T5(1), Tx(2) - - -1 To(n))s O € Sp. The sum
in (2.100) can be reduced to a sum over conjugacy classes which are given by products of
pi-cycles and with the results in subsection 1.4.3 for the numbers of group elements in each
conjugacy class together with using, from (2.115) for n = p;, r = 1, that in any conjugacy
class containing o € S,, each p;-cycle contributes a factor 1 — P to det[1,, —t D(g)] so that

det[T, —tD(g)] =TTy (1= "), g€Clp..p]» Shapi=n. (2.122)

The general formula (2.100) then becomes, with a sum over conjugacy classes as in (1.23),

1 & 1
Ms, (R t) = — S5t iime Nip (i) ()] = . (2.123)
n! Z=:J J%Z:le p1>p2§: pr>1 Zicdibs P, ()] [Tiei (1 =t
Applying this for n = 3,4,5 with the results given in (1.63), (1.64), (1.65)
3 1( 2 1
Ms;, (R, )_ 6(1 SR t2)(1 o T t)3)’
4 1( 6 3 6 1
Ms, (RY, 1) = 5;(5m T t3)(1 HtaertTeanz T (1—t)4)7
Ms, (R, t) = L _4 20 + 20
Ss 120 = t4)(1 B S )Y GIE) B G Y GE
10 1
taeray T aeaes T (1—t)5)' (2.124)

The generating function obtained from (2.123) using (1.69) is expressible as a plethystic
exponential

iu”MSn(R”,t) SPE(wt:f),  f(t) = li_t (2.125)

By expanding in ¢ for this f(t), Yo, %f(tm) =->7oIn(1-wut"), and hence

S e
0 r>

n= r=15,>0

Z u" Mg, (R™,t) = H (2.126)

1-utr

Zrzl Sr<n
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In each case the results are in accord with the general formula

1
1—¢tr

Ms, (R"1) =[]

r=1

(2.127)

This expression can be interpreted as showing that for every p < n there is a new homo-
geneous symmetric polynomial of degree p, other such polynomials can be represented as
sums, with rational coefficients, of products of symmetric polynomials of lower degree. For
instance we may consider p,(z) = Yo_;zd, p = 1,...,n as a set of primary polynomial
invariants. For n =2 (2.123) coincides with (2.116).

For the anticommuting case

- n
Ms, (M",t) = t". (2.128)
r=0

so there one invariant for any p < n.

The n-dimensional representation of S, is reducible since setting all z, equal defines
an invariant subspace. An irreducible (n — 1)-dimensional representation is obtained by
imposing the linear condition )., x, = 0, which of course is invariant under S,. In this case

n
1

Ms, (R™1t) = ]‘[1 s
r=2 +

(2.129)

The lack of the linear 1 -t factor reflects the absence of the ¥, x, invariant. (2.129) is
identical with (2.120) for n = 3.

For the alternating group A, conjugacy classes involving odd numbers of 2-cycles are
removed. Following the results in 1.4.3 for n = 3,4,5 the general expression is
1

Ma (R0) = (1 e D)[T

r=1

(2.130)

With less symmetry there is an extra secondary invariant ¢(«) = [Ti<pca<n (Ta—2b), of degree
%n(n —1), as well as the n primary invariants which are present for S,,. ¢,(x) changes sign
under odd permutations in S,. However g,(x)? is invariant under all S,, permutations and
can be expressed in terms of {p,(z)}. This explains the presence of the single factor in the
numerator in (2.130). There is a similar reduction as in going from (2.123) to (2.129) on
restricting to an irreducible representation on R,

2.8.3 Molien Series and Wreath Products

The wreath product, whose action is defined in (1.51), plays an important role when groups
act on spaces with symmetry conditions imposed. The simplest illustration is Zo:Zo where
7o x Lo acts on (x,y) € R? by reflecting 2 and y and there is also a Zs action obtained
by interchanging = and y. On this two dimensional space the representation of Zs:Zs is
obtained by taking

di=(59), do=(§%), dz=(39), da=(32%),
ds=(98), de=(97), dr=(%%), ds=(°%7), (2.131)
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with dy,ds, ds,dy representing Zo x Zs. Applying (2.100)

13 1 1 1 1 4 2
M R%t) = = == + + +
22222( ) S;det(]l—tdi) 8((1—t)2 (1+t)2 1-—1¢2 1+t2)

1

Tt (2.132)

The fundamental invariants are just z2 + y? and z* + y*.

More generally for G :S,, the Molien formula allows for significant simplifications. For
a representation d(g) of G acting on R¥ then (2.100) gives

1

1
Mgs,(R™,t) = ——— ’
G’zSn( ) IG|"n! a;ﬂ gE;nx det (]1 —tDa(gJ))

(2.133)

where D, is the representation of G:S,, acting on R™ formed from the n-fold tensor product
of d(g). This representation depends on the decomposition of ¢ into non overlapping cycles,

0 =0p,...0p, € C[p17~-~7pr] = (o = 9(p1) U.. “9pr)> 9(p) = (g(p)la cee ?g(p)p) (2134)

with oy, 0, = e, generating cyclic permutations of the group elements in g(,. In this case
Do (go) = Dy, (9(p1)) @ -+ ® Dp, (9(p,)) with

0 0 0 0 dy
da 0 00 0
Dp(gpy) = 0 ds 00 0 |, p22, Di(gn)) =di, di=d(gep))- (2.135)
0 00 -dy O
Since
1y 0 0o - 0 —tdi 1y 0 0 00 ]lk—tpdldp...dg 0 0 - 0 —tdy
—tdy 1 0 - 0 0 tdo Iy 0 -0 O 0 1, 0 - 0 0
0 —tdz 1 - 0 0 t?dsde 0 1, -0 0 |= 0 “tds 1j - 0 0 ’
0 0 0 - —tdp 1y tPld,.de 0 0 - 0 T 0 0 0 - —td, 1y
(2.136)

evaluating the determinant becomes straightforward giving

det (1, —t Dp(g(p))) = det (L = Pdy .. .dy) = det (Lx = tPd(g(pyp---9py1)) - (2-137)

Using
Z(gl,...,gp)erx f(gp s 'gl) = |G|p_1ZgGG f(g) ) (2138)
the Molien sum in (2.133) can be reduced to a sum over conjugacy classes of S,
Mes,(B*. )= Y ¥ Y sl O :
WOn ) - n,2.-1JiPi .
N ST Gy o] proposeprsl v G gecz det (]lk —tpld(g))
1 & s .
DD > busr s 1] Ma(RF,#9). (2.139)
T 12112, egr 21 p1op2>..pr2l i=1
From (1.69)
S u"Mas, (R™,t) = PE(u, t; Mg(RF)). (2.140)
n>0
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Various special cases are easily obtained. From (2.116) and (2.123), (2.123)

1
1—¢mr”

Mg,,s,(C",t) = Ms, (C™,¢™) = ] (2.141)
r=1

For m = 2, taking C" — R", this is just the Molien series for the symmetry group of the

n-dimensional hypercube. For n = 2 this reduces to (2.132). Using (2.120) with Npy =
Moy =1L

m+2
Mp,,iz,(R*,t) = %(MDm(RQ,t)2+MDm(R2,t2)) = e _;4;(’51 RO (2.142)

It is an exercise to determine the primary and secondary invariants in this case.

2.9 Symmetries in Quantum Mechanics, Projective and Anti-Unitary
Representations

A symmetry of a physical system is defined as a set of transformation acting on the system
such that the physical observables are invariant. In quantum mechanics the state of a
particular physical system is represented by a vector [1)) belonging to a vector (or Hilbert)
space H. The essential observables are then the probabilities, given that the system is
in a state |[¢), of finding, under some appropriate measurement, the system in a state
|¢). Assuming [1)),|#) are both normalised this probability is |(¢[s))|?. For a symmetry
transformation [¢)) — [¢)") we must require

(Bl)[* = ([0 )* for all [ih),|¢) € . (2.143)

Any quantum state vector is arbitrary up to a complex phase [¢)) ~ €*®|y)). Making use of
this potential freedom Wigner?® proved that there is an operator U such that

Uly) =14"), (2.144)

and either

(@10") = (GUTUW) = (gle),  Ularlhr) +azlpa)) = a1Uln) + asURpa) (2.145)

so that U is unitary linear, or

(¢'10) = (AlUTUI) = (¢l)*,  Ularltn) + azliha)) = ar"Ulpn) + ag'Ulea),  (2.146)

and U is unitary anti-linear. Mostly the anti-linear case is not relevant, if U is continuously
connected to the identity it must be linear.

For the discrete symmetry linked to time reversal t — —t the associated operator T must
be anti-linear, in order for the Schrédinger equation i%kﬁ) = H|y) to be invariant when
THT™! = H (we must exclude the alternative possibility THT ! = —H since energies should
be positive or bounded below). This requirement also apparent since if x, p are the position,

20Bugene Paul Wigner, 1902-1995, Hungarian until 1937, then American. Nobel Prize 1962.
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momentum operators then the action of time reversal requires T2T ™' = z, TpT ™! = —p and
for this to be compatible with the fundamental commutation relation [z, p] = i1 it is
necessary that 7' is anti-linear.

In the simplest case if G is a symmetry for a physical system with a Hamiltonian H we
must require

Ulg]HU[g] ' =H forall geG. (2.147)
If H has energy levels with degeneracy so that
HI,) = Blg,), r=1,...,n, (2.148)

then it is easy to see that
HU[gll¢r) = EU[g]l¢r) . (2.149)

For a symmetry group G = {g} there are then unitary operators U[g] where we require
Ule] =1,U[gt] = U[g]™*. If the unitary operators satisfy the usual group multiplication
rules U(g:)U(g;) = U(gig;) then

Ulgllr) = ZEIMDST(Q), (2.150)

and furthermore the matrices [Ds,(¢)] form a n-dimensional representation of G. If {|¢,)}
are orthonormal, (¢,]1)s) = §,5, then the matrices are unitary. The representation need not
be irreducible but, unless there are additional symmetries not taken into account or there is
some accidental special choice for the parameters in H, in realistic physical examples only
irreducible representations are relevant.

2.9.1 Projective Representations

However in quantum mechanics, because of the freedom of complex phases, we may relax
the product rule and require only

Ug:]U[g;] = e799)U [gig;] . (2.151)

If the phase factor e*” is present this gives rise to a projective representation. However the
associativity condition (1.4) ensures v(g;, g;) must satisfy consistency conditions,

Y(9i»99k) + (g5, %) = Y(9igj, 9r) + V(93> 95) - (2.152)

There are always solutions to (2.152) of the form

v(9i, 95) = a(gig;) — a(gi) — a(g;), (2.153)

for any arbitrary a(g) depending on g € G. However such solutions are trivial since in this
case we may let e’*(9)U[g] - U[g] to remove the phase factor in (2.151). For most groups
there are no non trivial solutions for v(g;, g;) so the extra freedom allowed by (2.151) may
be neglected so there is no need to consider projective representations, although there are
some cases when it is essential.
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As an extension of the above we may consider wave functions ¥(X) depending on
variables X € M on which there is a group action X - gX for g € G. There is then an
induced action on ¥ given by

U(X) > Uy(X) = Xp(gX), (2.154)
where we allow for a phase ¢, depending on g. Group multiplication requires

ei¢g192 (X) — ei(bgl (X) ei¢92 (gl_lx) . (2155)

A trivial solution is obtained if

¢i99(X) _ (il(X)x(g7 X)) (2.156)

since then we may redefine U(X) - ¢X(X)¥(X) and eliminate the phase from the trans-
formation (2.154).

Phases satisfying (2.152) or (2.155) modulo the trivial solutions (2.153) or (2.156) cor-
respond to cohomology classes H2(G,U (1)) or H'(G,U(1)) of the group G.%!

The complex phase in (2.151) may be restricted to a representation of a discrete sub-
group of U(1). Thus we may have Ulg;|U[g;] = A(9i,95) Ulgig;] with A(gs,g;) € Ch
and A(gi,959x) A(95,91) = A(9i95,9%) A(gi,g;) with the trivial arbitrariness, correspond-
ing to redefinitions of U(g;), A(gi,95) ~ A(9:,9;)B(9i9;)B(9:) "' B(g;)~" for B(g) € Ch.
The existence of non trivial A(g;,g;) corresponds to H*(G,Zy,). Assuming U(e) = 1 then
A(e,g;) = A(gi,e) =1 for all g;.

As an illustration we may consider the group Dy ~ Zs x Zs which has four elements
{e,a,b,ab} with a’? =b? = e, ab=ba. There is a two dimensional projective representation,
corresponding to non trivial H2(Ds,Zs), formed by taking D(a) = I, D(b) = J, D(ab) = K
in terms of the quaternion representation matrices in (1.115). For this example A(g;,g;) is
given by the table

Ale a b ab

e |1 1 1 1

a |1 -1 1 -1 (2.157)
1 -1 -1 1

ab | 1 1 -1 -1

2.9.2 Anti-Unitary Representations

Anti-unitary representations are possible for a group G = Gy U G1 where Gy is a normal
subgroup and for any h € Gg, a,a’ € Gy then ha, ah € G1, aa’ € Gog. This requires dim G =

2For real functions of n group elements g; € G, ©n(g1,...,9n) € C™, we may define d: C™ - C™*! by

(dpn)(g1s---sgn+1) = Pn(g2,- - gne1) = Pn(g192,93, - - s Gna1) + Pn (g1, 9283, - - - Gn1)
n n+1
_"'+(_1) ‘Pn(91>---:g7bgn+1)+(_1) i @n(Ql,---,Qn)

Then d? = 0. Define Z™ = ker dnC™, or {y, : dp, =0}, and the cohomology class H" (G, R) is defined by H™ =
Z"[dC™ ', The elements of H"(G,U(1)) are given by et (91:9n) with on(g1s- oy 9n) ~ ©nl(gi,...,gn)+2m.
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dim G;. Acting on states {|¢);)} then U(a) for a € G can act anti-linearly so that
Ulh] Z [vr)a, = Z [Vs)Dsr(h)a,, Ula] Z [vr)ay = Z |¢S)Dsr(a)ar* ) (2-158)
r=1 r,s=1 r=1 r,s=1
with both D(h), D(a) unitary matrices. Hence
D(hg) =D(h)D(g), D(ag)=D(a)D(g)" forall heGy acGy,geqG, (2.159)
so that D(a?) = D(a)D(a)*, and
D(a™") = D(a)™" = D(a)”. (2.160)

As was first described by Wigner this defines a co-representation extending the standard
representation of Gy. With these results

D'(h) = D(a"*ha) = (D(a) ' D(h)D(a))", (2.161)

also forms a representation of Gy. For a co-representation the matrix similarity transform
(2.5) becomes
D(h) - SD(h)S™!, D(a) - SD(a)S™'*. (2.162)

The matrices remain unitary if S is unitary. For S = a1, |a| = 1, then D(a) ~ o2D(a). The
co-representation is reducible if under the transformation (2.162) the matrices D(h), D(a)
can be made block diagonal for all h,a.

The different possibilities for anti-unitary representations can be obtained by assuming
a decomposition

D(h):(Méh) M((’h)), D(a):(N(()a) N(()“)), (2.163)

where M(h), M(h), N(a), N(a) are all unitary matrices with
N(a™)=N(a)", N(a)N(a)*=M(a®), N(a)N(a)*=M/(a?) (2.164)

Necessarily {M(h)} and {M(h)} define representations R and Ry of Gy which have equal
dimension dy, and the co-representation R of G defined by (2.163) then has dimension 2dy.
From (2.161)

M(a *ha) = (N(a)*M(h)N(a))",  M(a‘ha)=(N(a) ' M(h)N(a)) .  (2.165)

Representations with M <> M and N < N are equivalent. To obtain an irreducible repre-
sentation for G we require that the representations Rg, Rg are irreducible.

For the decomposit_ion (2.163) a special case arises when Rg and Ry are equivalent
representations, Rg ~ Ry, and, by a choice of basis, we may take M(h) = M (h) for all h.
Then (2.165) requires

N(a)'M(h)N(a) = N(a)'M(h)N(a) = [M(h), N(a)N(a)™']=0 forall h. (2.166)

93



Assuming Ry is an irreducible representation then by Schur’s lemma N(a)N(a)™! o< 1 and
hence
N(a)=aN(a) = N(a)'=a*N@)™ = a‘a=1, (2.167)

since N(a), N(a) are unitary matrices. Substituting in (2.164) with M = M
aN(a)N(a)* = M(a?), a=a”. (2.168)
Hence o = 1 and there are two possibilities.

I: N(a)=N(a), D(h)=M(h)1>, D(a)=N(a)(?§
II: N(a)=-N(a), D(h)=M(h)12, D(a)=N(a)(%}) . (2.169)

The remaining case arises when
III. Ry # Ro , (1) 7?,0 ~ R(]* s (11) 7?,0 % R[)* . (2170)

The first case is reducible since we may easily construct a real S such that S ( (1])5_1 =
(§9) so that
{D(h),D(a)} - {M(h),N(a)} & {M(h),-N(a)}. (2.171)

The two anti-unitary representations of dimension dy in this decomposition for case I are
equivalent. Otherwise in cases II, III there is only a single irreducible representation of
dimension 2dy. If in (2.165) a — a’ then M(h) - M'(h) = SM(h)S~! corresponds, up to
an equivalence, to the same representation Rg. If the group G is abelian then only IIIi is
possible in (2.170). The anti-unitary irreducible representations of G are then determined
by the unitary irreducible representations of Gg.

In the trivial case where G = {e,a} ~ Zy and M (h),N(a) - 1 then we may identify
U(a) =T, the anti-unitary time reversal operator and cases I or IT arise according to whether
T? =1 or -1 and we take N(a) — 1 or —1 respectively. As described later T2 = (-1)¥ where
F is the fermion number. For time reversal invariant systems with an odd number of spin-%
particles there is then a twofold degeneracy. This applies in atomic physics with just an
external electric field, since electric fields are invariant under time reversal, and is termed
Kramers?? degeneracy.

A restriction of general anti-unitary representations arises if the action of a € G1 gener-
ates an inner automorphism on Gy so that

atha=fhf, feGy forall heGy, = [af,h]=0, (af)*c Z(Gy),. (2.172)

If the centre of Gy, Z(Gy), is trivial then (af)? = e. In this case G ~ G x Zy and we may
identify T' = Ulaof] as the time reversal operator for some particular ag € G1. For such an
anti-unitary representation following (2.159)

DrD(h)*=D(h)Dr,  DrDy ==+1,  Dr=D(aof), (2.173)
allowing (agf)? = e to be projectively represented so that T2 = 1. For any a € Gy

D(a) = D(aag ') Dy . (2.174)

22Hans Kramer, 1894-1952, Dutch.
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Dy is assumed to be unitary, D7* = DT so that this implies

D(h)*=CD(h)Cc™', Cc=xCT, C=Ds!'. (2.175)

In case I of the Wigner classification {D(h)} forms an irreducible representation which
is then real or pseudo-real according to whether 72 = 1 or —1. For case II D(h) decomposes
into two identical irreducible representations M (h) and we can take

Dy - (_?K 10() . KM(h) - MWK, KK* -+, (2.176)
In this case we can therefore take C' = K~! with C' = FC7 so that the representation defined
by {M(h)} is pseudo-real or real depending on whether T2 = —1 or 1. Finally for case II1
D(h) decomposes into two different irreducible representations M (h), M (h) and we can
take

Dp = (2, IO{) , KM(h)*=M(h)K, KM(h)*=M(h)K, KK*=KK*=x+1. (2.177)
Since M, M are inequivalent the representations are necessarily complex with M equivalent
to the conjugate representation formed from M. The type of representation of Gy, real,
pseudo-real or complex, then determines the associated anti-unitary representation of G to
correspond to cases I, II or III.

Extending results from the standard discussions of representations to the anti-unitary
case is more involved. The complex character

x(9) = tr(D(9)), (2.178)

is well defined if g € G, as a consequence of (2.162), under changes of basis only if S is
restricted to be real. Restricting to g € Gy the character is independent of the choice of
basis and since, from (2.159) and (2.160),

D(hgh™') = D(h)D(g)D(h)™", D(ag™'a™) = D(a)D(g)"D(a)™", heGo,acGi,

(2.179)
the character x(g)|gec, is invariant for any g belonging to an extended conjugacy class
defined by Cq(g) = {hgh™*,ag™'a™ : h € Go,a € G1}. In general Cs(g) > Cg,(g) but
may also include additional conjugacy classes Cq,(g1) if ag™ta™t = g1 ¢ Cg,(g) for some a.
If d’g7ta’™! = go for some @’ # a then necessarily go € Cg,(g1) since aa’ 'gea’a™ = ¢
and aa’' € Go. If there is any a € Gy such that ag 'a™' = g for some a € G then
Ca(g) = Cay(9), g € Go, if there is no such a, so that ag 'a™' = g1 ¢ Cg,(g) for any a,

then Cq(g) = Cay(9) UCaq,(1)-

~ For the case G = G x Zy then for g € Gy Ca(g) = Cg,(g) if g7' € Cg,(g), otherwise
Ca(g) =Cao(9) UCay(g7").

From (2.163) and (2.165)

2xro(h), h=a"'hta for some aeGy,
XR(h):{ o(h) )

XRo(h) + Xzo(h),  XRo(h) = XRe (a7th™ta), h#a'h la for any a e G;.
(2.180)
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If the irreducible representations for Gy are labelled R, with Ro, = Ro, with x, the
corresponding characters and C, are the conjugation classes for G, with r,s = 1,...,ng, then
for G the irreducible anti-unitary representations are then R ; with associated characters
Xa,; and the extended conjugation classes C_G,k are then determined in terms of these

= CS, hECS, a_lh_la€C§, CS =C§,
Cok = 171
CSUC§, hECS,CL h GECg,CS:/:Cg,

XT(CS)v 2XT(CS)7 Ia IIa

XT’(CS) + XF(CS) s x;(Cs) = Xr(cg) ., III. (2'181)

XG,j(h)‘heC_G,k = XG7j(éG,k) = {

The number of irreducible representations for GG is equal to the number of extended con-
jugacy classes so that j,k = 1,...,n. In general ng —n = nr. For IIli the anti-unitary
characters are real. From the orthogonality relations for characters of Gy (2.56) we may
directly obtain

1 * 1 L. zl * 2] 7 . 5
Gl hZC; Xg.j/(h) " xg ;(h) = Gol kzl di X 1(Ca k) X, (Car) =tjdjj, dy=dimCqy,
€Go =
(2.182)

with ¢; = 1, 4, 2 according to whether the representation R ; is of type I, II, IIL. Since the
number of extended conjugacy classes is equal to the number of anti-unitary representations

n 1 B _ i} G
> - Xa,(Canr) xg;(Caw)” = d_0|5k’k- (2.183)
j=1 "% k
As a special case
n 1 )
3 - (dimRg ;) = |Gol. (2.184)
j=1Uj

As was described by Dyson?? some problems can be circumvented by adopting a real form
for the representation of GG. Starting from a complex co-representation of G of dimension
n satisfying (2.159), (2.160) then corresponding real matrices Dp are obtained by taking,
for any h € Go, a € G,

D(h)=a(h)+ib(h) eU(n) - Dg(h)=a(h)la+b(h)JeO(2n,R),
D(a) =c(a)+id(a)eU(n) - Dg(a)= (C(CL) 1o +d(a) J)G €e0(2n,R), (2.185)
where
J=(%8 ., 60=(%), 0J=-J6. (2.186)

{Dg(h), Dr(a)} then form a standard representation of G and 2 Re x(h) = tr(Dg(h))
for h € Gyg. The conjugate representation D(g)* — 0D(g)f and so has an equivalent real
representation. The real conjugacy classes for any g € G are then Cr(g) = Cq(g) if g7* €
Ca(9), Ca(g) uCa(g™) otherwise.

23Freeman Dyson, 1923-2020, Britiah then American.
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For the three cases described above

I: Dg(h)=Mg(h), Dg(a)=Ng(a), n=do,
II: Dg(h)=Mpgr(h)®1ls, Dgr(a)=Ng(a)®J, n=2d,
IIT: DR(h) ZMR(h)®P++MR(h)®P_,
Dg(a) = Ng(a)® P.J - Ng(a)® P-J, P.=31(12+0), n=2dy, (2.187)

where case I has been reduced to a single irreducible component and the real forms are
obtained from (2.163) just as in (2.185). The representations in each case are characterised
by the algebra of matrices commuting with Dr(h), Dg(a) for all h,a. For {M(h)}, {M(h)}
forming irreducible representations of G these have a real basis 14,e, where

I: eg=1-, II: eg=120®1s, e1=JQ0, ea=120J, e3=J®0J,
II: eg=13®15, e1=J®6, (2.188)

where ei = eg and in case II eie; = —0ij e + € e for 4,5,k =1,2,3, the algebra of quater-
nions, while for case III then e;? = —ey the algebra corresponding to complex numbers.
Only in case I is the usual form of Schur’s lemma for irreducible representations applica-
ble.?* For case IIT although {M (h)}, {M(h)} define inequivalent representations of G the
corresponding real representations { Mr(h)}, {Mg(h)} may or may not be equivalent under
real conjugation.

Commuting with 1g,e, does not uniquely characterise the representation matrices in
(2.187) in each case. It is then necessary to augment the basic group G so that

G->G={j"G:r=0,1,2,3, 5" = e, hj=jh, heGo, aj = j%a, acG1}, |G|=4|G|. (2.189)

Correspondingly CN{O ~ Z4 x Go. The representation matrices for G are extended to G by
taking Dgr(j"g) = J"Dgr(g) with J = J or J ® 15 according to case I or cases II, III.

Just as in section 2.4 for two representations R, R’ with dimensions dg,dgr’ respectively
we may define in terms of the real representation matrices as in (2.187)

’ 1 N, ~
S = = 3 DI NG )DL @), (2.190)
’ Gl ;& ™ ’
geG

so that as shown in (2.49) the two sets of real representation matrices for R, R’ are linked

by S D (3) = D) (3) Sl and ST DY) (3) = DY), (3) SRR For R, R!

rt,uv ts,uv R,wv Ruw

irreducible it is then necessary that Sﬁ?;z,a) =0 for R #+ R’ but in this case instead of (2.50)

ST = 6ppr S A (Lage)rs (Lages)us - (2.191)
12214

?YThe real matrices which commute with Dg(h), Dr(a) for all h,a form a real vector space which is
closed under matrix multiplication. These may be restricted to form a division algebra where every non
zero element has an inverse. A theorem due to Frobenius says that every such real division algebra has a
basis in terms of real e, which satisfy the conditions as above for R,C or H. This provides an alternative
characterisation of the three possible anti-unitary representations.
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It is easy to see that

S(RfR)

R (Lgpew)ou = (Lgpew)rs = c%”nl,w: o, for tr(eye,) =crnuw, (2.192)

tRAR
where, taking cg = 2 or tg = 4 according to whether the representation is of type I or
type ILIIL, 7, is diagonal with noo = 1, 7;; = —d;;. Hence ¢y’ = 0" /crdr with n*” the

inverse of 7,,. For orthogonal matrices DR (71 = DR (g) and the result (2.191) can

- R,rv R,or
be re-expressed by summing over G/G as

1 R R (R (R v
5161 2 (P @) DIL(9) + (TDE (9)or (TP (9))us) = 35 e (i) (Lan v
geG WV
(2.193)
By contracting indices
1 R R 5 (R (R 1 R
s 2. (D@D (9) + TP (9)IDF(9)) = 1 3 D (a®)
| |g€G | |aeG1
1 v
= odn " Laged ey, (2.194)
since Dgz)(g)j = ingz) (g) for g = h,a. Using tr(e,le,) = cr 0
1 ]‘7 I?
Fr = €l > (DGO (a?)) = 1Gol > Rexwr(a®) =06, =1-2, I, (2.195)
a€G1 0 aEGl 0 III

This result extends the Frobenius-Schur indicator as in (2.63) to anti-unitary representa-
tions. The cases I, III, IT may be labelled by R, C, H according to the different forms of
the commutator algebra with the bases given by (2.188).

By taking traces in (2.193)

1 2 2 1 * v
= > ((ra® )+ (rb®0)) = == ¥ xw(h) xr(B) =10, (2.196)
|G0| heGo |G0| heGo
so that
L, I
(Xr.XR)=tr =14, II, (2.197)
2, III.

This is as expected from the usual orthogonality relations for characters of irreducible
representations of G since for the three possible cases Xz 1 = Xar Xr11 = 2Xas and XR 111 =
X+ Xaz- The result is equivalent to (2.182). For any irreducible representation then

Fr+{XR:XR) = Fr +1tR = 2. (2.198)

Various different possibilities for anti-unitary representations can be illustrated by a
range of different examples which are given in terms of tables where the characters for each
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extended conjugacy class are given for Go. For {M(h)} an irreducible complex representa-
tion of Gy of dimension n there is an associated irreducible 2n-dimensional epresentation
of Gy x Zsy given by taking

_(M(h) 0 (0 1
D(h) = ( 0 M(h)*) ,  Dr= (]1 0) . (2.199)
This corresponds to case III. If {1} c {M(h)} then there is an anti-unitary representation
for
_[M(h) 0 (0 1

corresponding to the central product G = (Go x Z4)/Zo.

The results described below are all derived from the character tables in 2.7. We also list
for each representation of Gy whether it is real R, pseudo-real H or complex C.

For G =7, x Zo, Gy = Ly,

Zp, n odd ‘ C Cor F
Ry, R | 1 1 L, kr=1,...3(n-1), (2.201)
Rok, C | 2 2cos2krm/n 0
Zy neven | Cp g Cor Ci2 F
Rin R | 1 1 1 1
Row C | 2 2cos2hrn/n 2(-1)F 0 Fr=logn-l, (2.202)
Rig, R | 1 -1 (-D 1
For G = Zypn, Gy = Zop,
Loy, Cia Car Ci2 F
Riy, R| 1 1 1 1
Row C | 2 2ecoskrn/n 2(-1)" 0 k,ar=1,...,n-1. (2.203)
Ris,R| 2 2(-1)"  2(-1) -2

For G = D,,, Gy = Z,, the irreducible representations are all one dimensional,

Z, n odd ‘ 07177« F
Rik, % g;g exp 2krmi/n 1 kr=0,...,n-1, (2.204)
Zp, m even ‘ Clr F
R k=0,1 ) , kyr=0,...,n-1. 2.205
R ks c k;eoéz exp 2krmi/n 1 ( )
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For G = Dyy,, Go = Day,

Doy, Cix  Cio Cor Com F
Ri, R | 1 1 1 1 1
Rig, R | 1 1 1 -1 L kr=1,....n-1. (2.206)
Row, R | 2 2(-1)* 2coskrr/n 0 1
Romy R | 2 2(-1)"  2(-1)" 0 0

For G = Q4y, Go = Za,, the conjugacy classes for Zo,, are not extended and

ZQn ‘ C_LT f’
C k+0,% . B
Riks g kooin exp 2krmifn L 7];_%,...,271—11, (2.207)
=0,...,n-1.
Ckzl(n . LA
Roks g l; 2%((2_1)) 2exp(2k + 1)rmi/n -2

In this case Fr = Xr(Cin).

For other examples we may consider assuming quaternionic groups for Gg. For each
quaternion group Gq described in 1.5 there is a corresponding faithful irreducible two
dimensional representation {M (h)} for all h € Gg obtained by using the representation
(1.115) for the quaternions. There is then a four dimensional anti-unitary representation
for G = Gq x Za, Gy = G obtained by taking

D(h):(Méh) M(()h)), DT:(_OJ ‘é) (2.208)

which generically corresponds to case II. If {+1} c Gq then for G = (Gq xZ4)/Z2, Gy = Gq,
there is a two dimensional anti-unitary representation given by

D(h)=M(h), Dr=J. (2.209)
Clearly now Dp? = —1,.

For G = Q4p x Zo and Gy = Qg we may use (2.208)

Qan n odd C_l,l C_Lg 6_2771 Con F

Rii, R | 1 1 1 1 1

Ri2, R 1 1 1 -1 1 r=1,...,n-1

Rom, C | 2 -2 2(-1)" 0 0’ k= 1,7. . ,g(n —’1), (2:210)
Rok, R 2 2 2 cos 2krm/n 0 1

Rur, H 4 -4 4cos(2k-1)rn/n 0 -2
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Qun 1 even (?171 (?172 C_27T Cni Cno F
Ri1, R 1 1 1 1 1 1
Risy, R | 1 1 1 1 -1 1
Ris, R | 1 1 (-1)" 1 -1 1
Risy R | 1 1 (-1)" 11 1
Rok, R 2 2 2 cos 2krm/n 0 0 1
Rap, H 4 -4 4dcos(2k-1)rm/n 0 0 -2

_ _ _ 1(pe _
For the n odd case 4n Fr =2 xr(C1,1) + 2n xr(Ci2) + 427?:(1 2 XR(C2,2r) while for n even

_ _ _ Lin—2 _
dnFr =2xr(Cr1) +2(n+1)xr(Ci2) + 42,?:(1 )XR(szr)-

For G = Qup x Z4/Zo and Gy = Q4 we may use (2.209)

Qun, m odd Cia C_LQ Cor Con F
Ri1, R 1 1 1 1 1
Ri2, R 1 1 1 -1 Lkr=1,...n-1, (2212
Romy, C | 2 -2 2(-1)" 0 0
Ra ks g,f:vii 2 2(-1)* 2coskrm/n 0 1
Qan neven | Ciy Ci Car Cn1 Cno2 F
Ri1, R 1 1 1 1 1 1
Rip2, R 1 1 1 -1 -1 1
Ris, R 1 1 (-1)" 1 -1 1 k=1 n-1. (2213)
Risy R | 1 1 (-1)" 11 1
Ro,k g,ffvii 2 2(-1)* 2coskrm/n 0 0 1
1)

_ _ _ Ln

For the n odd case 4n Fr = 2n xr(C1,1) +2 xr(C1,2) +4Zf:(1
_ _ _ Lin—2 _

4n Fr = 2(n+ 1) xr(C11) +2xr(C12) + 45257 xR (Cozr1)-

These various examples illustrate some of the possibilities where the different cases, I, 11
and IIIi, I1lii, of anti-unitary representations for G can be combined with real, pseudo-real
or complex representations of Gy. There are ten possibilities altogether (eight are given in
the above tables) since case I1lii for G requires a complex representation for Gj.

61

xR (Ca,2r-1) while for n even



3 Rotations and Angular Momentum, SO(3) and SU(2)

Symmetry under rotations in three dimensional space is an essential part of general physical
theories which is why they are most naturally expressed in vector notation. The fundamental
property of rotations is that the lengths, and scalar products, of vectors are invariant.

Rotations correspond to orthogonal matrices, since acting on column vectors v, they are
the most general transformations leaving v’ v invariant, for real v the length |v| is given by
|u]? = vTv. For any real orthogonal matrix M then if v is an eigenvector, in general complex,
Mv = \v we also have Mv* = X*v”, so that if A is complex both A\, \* are eigenvalues, and
(Mv*)T Mv = |M?vtv = vTv so that we must have |A]? = 1.

3.1 Three Dimensional Rotations

Rotations in three dimensions are then determined by real matrices R € O(3) and hence
satisfying
RTR=13 = (detR)*=1. (3.1)

The eigenvalues of R can only be ¢, e™® and 1 or —1 so that a general R can therefore be
reduced, by a real transformation S, to the form

cosf —-sinf O
SRS™ =|sinf cosf 0 |. (3.2)
0 0 +1

For det R =1, so that R € SO(3), we must have the +1 case when

trR=2cosf+1. (3.3)

Acting on a spatial vector x the matrix R induces a linear transformation
x - x =x", (3.4)
R
where, for i, j, three dimensional indices, we have
$’1 = Rijxj 5 (35)

For det R = —1 the transformation involves a reflection. Of course rotations preserve scalar
products and vector products up to a sign

xt.yf=x.y, xftxyft=det R (x xy)¥. (3.6)

A general R € SO(3) has 3 parameters which may be taken as the rotation angle 6 and
the unit vector n, which is also be specified by two angles, and is determined by R;;jn; = n;.
n defines the axis of the rotation. The matrix may then be expressed in general as

R;j(6,n) = cosBd;; + (1 —cosO)ninj —sinbe;jpny, (3.7)
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where €51 is the three dimensional antisymmetric symbol, €123 = 1. The parameters (6,n)
cover all rotations if
neS* 0<f<m, (m,n) ~ (m,-n), (3.8)

with S? the two-dimensional unit sphere. The space corresponding to (3.8) is then the ball
of radius 7 with opposite points on the surface identified. Equivalently the range of the
angle 6 can be extended to 0 to 27 if

R(6,n) =R(2r-6,-n) = R(6 +27,n). (3.9)

In (3.4) this requires
xOP) — coshx +(1-cosf)nn-x+sinfnxx. (3.10)

For an arbitrary R € SO(3) then taking x — xB gives

((fol)R(g’n))R = xBROMET _ o5 + (1-cosf)nnf x+sinfdnf xx. (3.11)
since nf-x=n-x%" and n® xx = (nxx® )R, Hence
RR(0,n)R™' = R(9,n"), (3.12)

so that all rotations with the same 6 belong to a single conjugacy class.

The additional transformation
x'=x-2mm-x, m’=1 = x?=x?, (3.13)

corresponds to a reflection through the plane perpendicular to m. The associated matrix
given by
Rij=0ij-2m;mj, RyRyj=0ij, (3.14)

has eigenvalues 1,1,-1 and belongs to O(3). Arbitrary elements of O(3) can be obtained
by combining rotations and reflections. For two reflections defined by unit vectors m and
then 1

x'=x-211'x-2mm-x+411-mm-x

=(2(1-m)2—1)X+2(1><m)(1><m)-x+21'm(1><m)xx, (3.15)

which, by comparing with (3.10), if 1. m = cos ¢ corresponds to a rotation through an angle
2¢ and about an axis n where 1 x m = sin¢n. Any rotation R(2¢,n) can be expressed
as a product of two reflections by choosing a unit vector m, m-n = 0, and then defining
l=cos¢pm+sing (mxn), 1?=1.

For an infinitesimal rotation R(d6,n) acting on a vector x and using standard vector
notation we then have
X

x'=x+d§0nxx. (3.16)
R(66,n)

It is easy to see that x'2 = x? + O(56?).
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Although the group SO(3) is infinite dimensional the notion of a sum over group ele-
ments for a finite group can be extended to an integration over the three dimensional unit
ball. The crucial property (1.7) can be extended by requiring

f dyu(0,n) F(R(0,n)) = f du(0,n) F(R(6,0)R) for all ReSO(3). (3.17)
This is satisfied, as shown later, by taking
du(f,n) = dQy, dé sin® %9, neS? 0<fh<m. (3.18)

The group volume Vgo3) = fSO(g)du(H,n) =272,

3.2 Isomorphism of SO(3) and SU(2)/Z,

SO(3) ~ SU(2)/Zs, where Zs is the centre of SU(2) which is formed by the 2 x 2 matrices
{1,-1}, is of crucial importance in understanding the role of spinors under rotations. To
demonstrate this we introduce the standard Pauli®® matrices, a set of three 2 x 2 matrices
which have the explicit form

o1 = (g (1)) , o9 = ((z) I)Z) , 03 = (é _01) . (3.19)

These matrices satisfy the algebraic relations
0i0j = 6”- 1o+ ieijkak R (320)

and also are traceless and hermitian. The matrices (12, i03, 102, io1) provide a two dimen-
sional complex representation of of the quaternion algebra (1.79) identical to (1.115). Adopt-
ing a vector notation o = (01, 02,03), so that (3.20) is equivalent to a-o b-o = a-b1+iaxb-o,
we have

ol =0, tr(o) =0. (3.21)

Using (3.20) then gives
tr(amj) = 2(5@' s (3.22)

which ensures that any 2 x 2 matrix A can be expressed in the form
A=1tr(A)1+5tr(cA) o, (3.23)
since the Pauli matrices form a complete set of traceless and hermitian 2 x 2 matrices.

The Pauli matrices ensure that there is a one to one correspondence between real three
vectors and hermitian traceless 2 x 2 matrices, given explicitly by

x->x-0=(x-o0), xzétr(ax-a), (3.24)
Furthermore x - o satisfies the matrix equation

(x-0)*=x°1. (3.25)

2Wolfgang Ernst Pauli, 1900-58, Austrian. Nobel prize 1945.
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From (3.25) and (3.21) the eigenvalues of x - o must be £v/x? and in consequence we have

det(x- o) = -x>. (3.26)

For any A € SU(2) we can then define a linear transformation x - x’ by
x . o=Ax-cAl, (3.27)

since we may straightforwardly verify that Ax-o A is hermitian and is also traceless, using
the invariance of any trace of products of matrices under cyclic permutations and

AAT=1. (3.28)
With, x’ defined by (3.27) and using (3.26),
x'? = —det(x'- o) = —det(Ax- 0 A") = —det(x- o) = x2, (3.29)

using det(XY) = det X detY and from (3.28) det A det AT = 1. Hence, since this shows
that x| = |x],
.7}’1 = Rijxj 5 (3'30)

with [R;;] an orthogonal matrix. Furthermore since as A - 1, R;; - 0;; we must have
det[R;;] = 1. Explicitly from (3.27) and (3.22)
O’iRZ‘j = AO']‘A]L = Rij = %tr(aiAajAT) . (331)

To show the converse then from (3.31), using (note 00,0 = —0;) 0;AToj = 2tr(AT)1 - AT,
we obtain

Rjj=ltr(AP -1,  oiRijo; =2tr(ANA-1. (3.32)

For A e SU(2), tr(A) = tr(AT) is real (the eigenvalues of A are e*™ giving tr(A) = 2cos )
so that (3.32) may be solved for tr(A) and then A,

1+ UZ'RijUj

A==+ T
2(1 +Rjj)§

(3.33)

The arbitrary sign, which cancels in (3.31), ensures that in general +A < R;;. This ensures
SO(3) ~ SU(2)/Zy. Any arbitrary 2 x 2 matrix A can be expanded in a basis formed by
the Pauli matrices and the unit matrix and then

A=zgl-ix-0eSU(2) < zif+x’=1 < (x9,x)eS>. (3.34)

The additional transformation
x-o=-m-ox-om-oc, m’=1 = x'=x-2mm-x, (3.35)
corresponds to the reflection (3.35).

For a SO(3) rotation R through an infinitesimal angle as in (3.16) then from (3.7)

Rij = 5@']’ - 40 EijkNk , (336)
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and it is easy to obtain for the associated SU(2) matrix ,
AR(80,n) =1-300in-o. (3.37)

Note that since det(1+X) = 1+tr X, to first order in X, for any matrix then the tracelessness
of the Pauli matrices is necessary for (3.37) to be compatible with det Ag = 1. For a finite
rotation angle 6 then, with (3.3), (3.32) gives |tr(ARr)| = 2|cos %9| and the matrix Ap can
be found by exponentiation, where corresponding to (3.7),

Agr(0,n) = e 2000 _ o 301 -sinifin-o,, +AR(0,n) - R(0,n) (3.38)
The parameters (6,n) cover all SU(2) matrices for
nesS?, 0<0<2r, (3.39)

in contrast to (3.8). For the matrices in (3.38) Ar(2m,n) = -1 € Z(SU(2)). For the
matrices {Ar(A,n)} integration can be defined just as in (3.18) with the integration range
on 6 extended to be from 0 to 27.

3.2.1 Non Compact Isomorphisms

The relation between the compact groups SU(2) and SO(3) can be extended to related
non compact groups. If we define & = (01,i02,03) then the 6; matrices are all real and
traceless. Hence for g,y real

A:y()]l+y'6'ESl(2,R) = y02—y12+y22—y32:1. (340)

Clearly the parameters have an infinite range, it contains the subgroup corresponding to
(1.123) by taking yo = cosh8, y; =sinh @, ys = y3 = 0. Since

det(x-6&) = —zi> + x5 — 3, (3.41)
then

X d=Ax-6A7", AcSI(2,R) < -—zl+xl-zf=-aP+a¥-2F. (3.42)

An alternative non compact group is SU(1,1) which is defined by
BlosB=03, detB=1. (3.43)

A basis of generators in terms of the Pauli matrices is & = (01, 02,i03) where o3 G+6T05=0.
In consequence

B=yl+y-6eSU(1,1) < yi-y’-yl+yi=1. (3.44)
In this case

det(x-6) = —zi> -z + x5, (3.45)
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and

x'-6=Bx-6B7", BeSU(1,1) < —r—alvaf=—a -2+ (3.46)

There is an isomorphism of SI(2,R) and SU(1,1) by rotating o9 into o3. This may
be achieved for A(y) € Si(2,R) then eii”‘”A(y)e_’%’wl = B(y') € SU(1,1), with y' =
(y1,v3,v2). In each case, by similar arguments to previously, we then have

SI(2,R)/Zs = SU(1,1)/Zs ~ SO(2,1). (3.47)

3.3 Infinitesimal Rotations and Generators

To analyse the possible representation spaces for the rotation group it is sufficient to consider
rotations which are close to the identity as in (3.16). If consider two infinitesimal rotations
R1 = R(6601,n1) and Ry = R(062,n2) then it is easy to see that the commutator

R=Ry 'R RyRy =1+ 0(50,665). (3.48)

Acting on a vector x and using (3.16) and keeping only terms which are O(d6;6602) we find
X P x' =x+ 501592(ng x (n1 xx) —ny x (ng x x))

=X+ 061005 (n2 xnp) x x, (3.49)

using standard vector product identities.

Acting on a quantum mechanical vector space the corresponding unitary operators are
assumed to be of the form
U[R(60,n)]=1-i00n-J, (3.50)

J are the generators of the rotation group. Since U[R(d0,n)]! =1 +id0n-J + O(56%) the
condition for U to be a unitary operator becomes

Ji=1J, (3.51)

or each J; is hermitian. If we consider the combined rotations as in (3.48) in conjunction
with (3.49) and (3.50) we find

U[R] =1- 2(501(502 (IIQ X nl) -J
=U[Rs] 'U[R\]'U[R]U[R1]
= 1—(591592 [HQ'J, nl-J], (352)

where it is only necessary to keep O(66,362) contributions as before. Hence we must have
[ng-J,n;-J]=i(ngxmny)-J, (3.53)

or equivalently
[Ji, Jj] = i€k Jk - (3.54)
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Acting on functions of x
Jo>L=-ixxV, (3.55)

so that, neglecting 662,
(1-i60n-L)f(x) = f(x-00nxx), (3.56)

corresponds to an infinitesimal rotation. It is straightforward to verify that L; satisfies the
commutation relations (3.54).

Although (3.50) expresses U in terms of J for infinitesimal rotations it can be extended
to finite rotations since

P N
U[R(0,n)] =exp(-ifn-J) = ]\lfl_r)rio (1 —zﬁn-J) . (3.57)

Under rotations J is a vector. From (3.12), U[R]JU[R(60,n)]U[R]™! = U[R(56,n*)]
which in turn from (3.50) implies

U[R)LU[R) ™ = (R™Y);J;. (3.58)

For a physical system the vector operator, rotation group generator, J is identified as
that corresponding to the total angular momentum of the system and then (3.54) are the
fundamental angular momentum commutation relations. It is important to recognise that
rotational invariance of the Hamiltonian is equivalent to conservation of angular momentum
since

URJHU[R]'=H <« [J,H]=0. (3.59)

This ensures that the degenerate states for each energy must belong to a representation
space for a representation of the rotation group.

3.4 Representations of Angular Momentum Commutation Relations

We here describe how the commutation relations (3.54) can be directly analysed to deter-
mine possible representation spaces V on which the action of the operators J is determined.
First we define

Ji = Jl + ’iJQ, (3.60)

and then (3.54) is equivalent to
|:J3,Ji] = :l:Jj:a (3613)
[Ji, J-]=2J3. (3.61Db)

The hermeticity conditions (3.51) then become

JI=J., JT=Js. (3.62)
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A basis for a space on which a representation for the angular momentum commutation
relations is defined in terms of eigenvectors of J3. Let

J3lm) =mlm). (3.63)
Then from (3.61a) it is easy to see that
Jilm) o< m£1) or 0, (3.64)
so that the possible J3 eigenvalues form a sequence ..., m—-1,m,m+1....

If the states |m + 1) are non zero we define
J_lm)=|m-1), Jilm) = Apm + 1), (3.65)

and hence
JieJ_|m) = App—1|m) , J_Jim) = Ap|m) . (3.66)

By considering [J., J_]|m) we have from (3.61b), if |m + 1) are non zero,
At = Am = 2m. (3.67)
This can be solved for any m by
Am =7 +1)-m(m+1), (3.68)

for some constant written as j(j+1). For sufficiently large positive or negative m we clearly
have A\, < 0. The hermeticity conditions (3.62) require that J,J_ and J_J, are of the form
O'O and so must have positive eigenvalues with zero possible only if J_ or respectively
J, annihilates the state ((¢|OTO[) > 0, if 0 then O) = 0). Hence there must be both a
maximum Mmpax and a minimum Mmpy;, for m requiring

Jelmmax) =0 = Ao = (J = Mmax) (J + Mmax +1) =0, (3.69a)
J—|mmin) =0 > )\mmin_l = (j + mmin)(j — Mmmin + 1) = O, (369]3)

where also
Mmax — Mmin = 0,1,2, ... . (3.70)

Taking j > 0 the result (3.68) then requires
Mmax = J Mumin = —J - (3.71)
For this to be possible we must have
je{0,3,1,3,...}, (3.72)
and then for each value of j
me{-j,—j+1,...5-1,7}. (3.73)
The corresponding states |m) form a basis for a (2 + 1)-dimensional representation space

V.
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3.5 The |jm) basis

It is more convenient to define an orthonormal basis for V; in terms of states {|jm)}, with
J,m as in (3.72) and (3.73), satisfying

(i mljm’) = dnm - (3.74)
These are eigenvectors of .J3 as before
J3|jm) =m|jm). (3.75)
and j may be defined as the maximum value of m so that
Jilij) =0. (3.76)

A state satisfying both (3.75) and (3.76) is called a highest weight state. In this case the
action of J; gives

Jiljm) = Nj,|jm=1), (3.77)
where N3, are determined by requiring (3.74) to be satisfied. From (3.66) and (3.68) we

must then have

il = Am =G =m)(G+m+1), NG = Anor = (G+m)(j-m+1). (3.78)

[Njm

By convention N ]*m are chosen to real and positive so that

=/GFm)(Grm+1). (3.79)

In general we may then define the the states {|jm)} in terms of the highest weight state by

1
(J-)"74) = ((2](2i§';) ji-n), n=01,...,25. (3.80)

An alternative prescription for specifying the states |jm) is to consider the operator
J? = J12 + J52% + J32. In terms of Jy, J3 this can be expressed in two alternative forms

(3.81)

52 J_J,+JP+ J3,
JoJ +JP—Js.

With the first form in (3.81) and using (3.76) we then get acting on the highest weight state
Fj5) =3+l d)- (3.82)

Moreover J? is a rotational scalar and satisfies
[J%, 7;]=0, i=1,2,3. (3.83)

In particular J_ commutes with J? so that the eigenvalue is the same for all m. Hence the
states |jm) satisfy

Fljm) =G+ Dlim), (3.84)
as well as (3.75). Nevertheless we require (3.77), with (3.79), to determine the relative
phases of all states.
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3.5.1 Action of Time Reversal

The anti-unitary operator 1T acts on the angular momentum operators according to
TIT ' =-3, TJT'=-Jp, THT'=-J; (3.85)

This is compatible with the commutation relations (3.54) or (3.61a), (3.61b) since T is
anti-linear. Hence in terms of the |[jm) basis if this is invariant under the action of T' we
have

T|jm) = €(=1)"""|j-m), (3.86)
for some complex phase ¢?. Hence
T2|jm) = (-1)¥ |jm), (3.87)

which generalises to T2 = (-1)¥" with F the fermion number.

3.5.2 Representation Matrices

Using the |jm) basis it is straightforward to define corresponding representation matrices
for each j belonging to (3.72). For the angular momentum operator

IO = G/ |I]jm) (3.88)
or alternatively

Jljm) = Z ljm’) J(j)m’m . (3.89)

The (25 +1) x (25 + 1) matrices JU) = [JU),,,,] then satisfy the angular momentum com-
mutation relations (3.54). From (3.75) and (3.77)

ID i =y T i =S GFm) G =m0+ 1) Syt s (3.90)
For R a rotation then '
DY) (R) = (jm'[U[R]|jm), (3.91)

defines (27 + 1) x (27 + 1) matrices DY) (R) = [Dq(TJL,)m(R)] forming a representation of the
the rotation group corresponding to the representation space V;,

U[R]|jm) = Z im'yDY) (R). (3.92)

m

Note that D(O)(R) =1 is the trivial representation and for an infinitesimal rotation as in
(3.16) . :
DW(R(56,n)) = 1941 — 160039 . (3.93)

To obtain explicit forms for the rotation matrices it is convenient to parameterise a
rotation in terms of Euler angles ¢, 0,1 when

R¢797¢ = R(¢,e3)R(9,e2)R(1/),e3) , {quﬂﬂb} = 50(3) for 0<O<m, 0< ¢, <2m, (3.94)
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where e9, e3 are unit vectors along the 2, 3 directions. For the corresponding two dimensional
matrix

_1 : Li(he
Ao = o Sidos -i00s ~Livoy _ [ COS s0e 12}1(4’”” —sin 36 e ?’(¢ 2 (3.95)
. sinlfe2@¥)  coslpezior) |7
with
{Ago4}t=SU(2) for 0<O<m, 2r<p-<2m, 0<p+1<d4m,
or 0<f<m, 0<p<2m, 0<p<4m. (3.96)

Pi
The allowed regions of (¢,1) in (3.94), (3.96) are enclosed in blue, red in @«» . Since

Apgromp = Aggpsar = —Apo.y (3.97)
the region in (3.96) maps into (3.94) allowing for a change of sign.

In terms the angular momentum operators J the rotation operators in terms of Euler
angles are then

U[R¢>,9,z/1:| _ e—icb]g e—i@JQ e—id)Jg ’ (398)
so that in (3.91)
DY) (Rypp)=e ™m0 d0) (9),  d9) (8) = (jm'le®2|jm). (3.99)

The matrices d¥)(6) = [dii,)m(ﬁ)] satisfy dU)(0)d?)(0") = d\9) (0 +0"). For the special cases
of 0 =m,2m, . ‘
d9) (1) = (<1 s, d9) (27) = (<)) 61 (3.100)

'm

Since iJy = %(JJr - J_) then with the conventions (3.75) and (3.77) dx) (0) are real.

In general DY) (R(2m,n)) = (-1)% 19,41, which for j a %—integer is not the identity. For
representations of SO(3) it would be necessary to take j to be an integer but in quantum
mechanics any j given by (3.72) is allowed since we require representations only up to a
phase factor. From the result for 6 = m we have

e ™25 m) = (=1)77™|j —m). (3.101)

Using this and e ™/3[jm) = e7™|jm) with e ™3 Jyei™3 = —J) we must have from the
definition in (3.99)

d9) (8)=dD) (-0) = (-1)"™dD,_(9) = (-1)"""dY) (-9). (3.102)

Furthermore diﬁ,)m,(w -0)=%,.» dg,)m,(—Q)dg,),m(w) = (—1)j+m'd£g,)_m(9).

For the simplest case j = %, it is easy to see from (3.90) that

%) (0 1 %) (0 0 (%)_1 1 0
J; _(00, J_—lo, J3 =510 -1/ (3.103)
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and hence we have .
J@=1lg (3.104)

where 0y, i = 1,2, 3 are the Pauli matrices as given in (3.19). It is clear that %o—i must satisfy
the commutation relations (3.54). The required commutation relations are a consequence
of (3.20). For j = % we also have

Lo _ginle
d3) () = (2 27) 3.105
»(0) (sin%@ cos%@ ( )
For j=1
<1>_(0ﬂ 0) <1>_(°°°) (1) _(Lo00
Jy = , J2=v2 0 0], Jo'=(00 0], 3.106
* 0 8‘/05 03 0 3 (o 0—1) ( )
and
1 1+cosf —/2sinf 1-cosf
d(l)(ﬂ):§ V2sinf  2cosf  —/2sind | . (3.107)
1-cosf /2sinf 1+cosb
For any integer j ‘
d$)(6) = Pj(cosh) (3.108)

witth P; the usual Legendre polynomials.

For general j there is an expression for difb,)m(ﬂ) in terms of classical Jacobi polynomi-
als. To obtain the associated differential equation we can start from (3.98) to obtain the
differential relations

JeU[Rpo4] = =T UlRpop],  J3U[Rgpyl=-TsU[Rpp] (3.109)
where
ji:eiﬁi’(i Cot@%i%—icscﬂ%), .73:—2'%. (3.110)

This follows using csc e /2.J3 = (cot 0.J3 + Jy)e /2. Tt is straightforward to verify that
Jx, Js satisfy the usual commutation relations (3.61a), (3.61b) and

2 2 2
j2:—8 4 ctH%—(cotei—CSCGQ) . (3.111)

002 o2 ° 96 o0

Using this with (3.109) to evaluate (jm/|J2U[Ry. 9.4 ]|7m) leads to the differential equation

2 A |

( - % —cotf % rm'2y (m/cote -m csc9)2) dfi,)m(O) =j(j+1) dfi,)m(@) (3.112)
Writing, for m > m/,

d9),.(6) = (cos 20)™™ (sin 26)" " P(cost), (3.113)
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the differential equation translates into a hypergeometric form
(1-t)P"(t) +2(m' - (m+1)t)P'(t) + (j —m)(j +m+1) P(t) = 0 (3.114)

The solutions are Jacobi polynomials giving

1
; j+m)!(j—m)! 2 m+m’ ;. m-m' _(m-m’ m+m’
2,0 = (IR s 30 (i 40 P o). (3110

For m =m’ =0 this reduces to (3.108). To check the normalisation for # - 0 and m >m’

j m-m/ 1 .y m-m'| :
di)(0) ~ (50)™ " ——— = (jm/| (T )" |jm)

m (m_m,)! 1
- 1 (G+m)(j-m)\?
= (Llgym—m 3.116
(26) (m-mN\G+m)N(G-m)) "’ ( )
m-m/ ,m+m’ j—m’)!
Defining
D =pU(Rzr = =
U =DV (R = =), (3.117)
then N , ;
(U(J)d(a)(g) U(J)T)m,m - ezme(;m,’m' (3.118)

As special cases

L (1 a _ 1 L V2i 1
U'2’ = % i1 s U = 5 \/51 0 \/52 . (3119)
-1 V2i 1

3.5.3 Integration over SO(3) and orthogonality relations

Corresponding to the sum over group elements for a finite group there is an integration over
the group parameters, here the Euler angles 0, ¢,1, for a continuous group. The crucial
requirement is to respect the property (1.7). If djug ¢ this requires that dug, g = dper ¢
where the change of variables (¢,0,1¢) - (0',¢',¢") is obtained by Ry 4 R = Ry 4 4 for
any rotation R. Infinitesimally with the j = 1 rotation matrices in (3.95) Ag,4 4 A
A9+597¢+5¢7¢+5¢ which gives, to first order in €y, €y €

€0,€4,Ep

00 =coseg, 0 = Sl.mgeg, 0 =€y + €y —siny cot O ey . (3.120)
sin
In consequence
0 snpse o
d(60,0¢,0v) = (db,do,dy)Jeg, J = 0 0 0 ) (3.121)
—sin ‘;?rsl}f —cos1) cot B
and hence

0(dfdedy sinf) =dfdedy (sinftrJ + cosé cosip)eg =0, (3.122)
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so that we may take for the integration measure in terms of Euler angles

1 )
it = 55 A0 dpdis sind, fs o0 =1 (3.123)

with the integration ranges as in (3.94).

The orthogonality relation (2.50) now translates for the unitary rotation matrices into

D) (j2) oL 5
_/50(331H9,¢7¢ mi'my (R¢ 0 ¢) sz’mz (R¢79ﬂﬂ) - m 0jjo 5m1’m2’ 6m1m2 : (3.124)

With the decomposition (3.99) this is reducible to

fo "a0 49 (9)dY?) (9) = (3.125)

2 +1 ]1]2'

The integration measure in (3.123) in terms of Euler angles can be transformed to other
parameterisations. The overall angle of rotation © can be expressed in terms of Euler angles
using, from (3.38) and (3.95),

cos%@ = %tr(A(b,g,w) = CoS %0 cos%(gb+¢}). (3.126)
For any function of © then
[dM9¢¢f f de Slnl@f(@)[dugqbwcs(cos =0 - (30519cos2(¢>+w)) (3.127)

where if cos %@ > 0 and taking ¢, = ¢ £ 1,

_/dﬂé’,qﬁ,w 5( cos %@ —cos %9 oS %¢+)

1 27 2w T ]
= 162 [%d(ﬁ—fo do, ; dé sm@é( cos%@—cos %9 cos%qh)
1 1 © 1 2 .
= ;COS §®A do, m . sin 5@. (3.128)

The final result remains if cos %@ < 0 so that the measure then becomes

1
—dO sin’i0, 0<O<2r. (3.129)
T

3.5.4 Characters for SU(2)

With the definition of characters in (2.51) the rotation group characters
x; () = tr(DYV(R(9,m))) . (3.130)
depend only on the rotation angle 8. Since

DY) (R(6,2)) = bpme ™, (3.131)
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they may be easily calculated

1 (0) - i “imb _ sin(j + 2)9

m=—j

3.132
sin 19 ( )

The orthogonality properties corresponding to (2.56) follow from using (3.129) with © — 0

1 27 . 1
- /0 df sin? %0 X1 (0)xj, (0) = Py ,/0 do (cos(yl —j2)0 —cos(j1 + jo + 1)0) 8i1 o s
21, 22 =0,1,2,... . (3.133)

Furthermore corresponding to (2.61)

S 10 i( i 1n(0-0") _ei%n(9+6’))

Z Xj (G)XJ(H ) =

1

.7 0727 I

oo

21 Z((5(0—0'—4n7r)—5(0+9'—4mr)) 1 ——6(0-60"), 0<6,0 <2r. (3.134)

2 2

For SO(3), when j,j" are integral, the integration range may be reduced to [0, 7] with the
coefficient on the right hand side of (3.133) is halved. There is a corresponding modification
in (3.134) and it is necessary to restrict 0 < 6,6’ <7 to get a single d-function.

In addition since
Xj(20) =20 e =2 (-1 (0), (3.135)

then
L or2m 9y 25
;fo d6 sin? 10 ;(20) = (-1)% | (3.136)

since only xo(€) = 1 survives after integration. By virtue of (2.63) this shows that the
representations are real for j integral, pseudo-real for j half integral.

3.6 Tensor Products and Angular Momentum Addition

The representation space V;, which has the orthonormal basis {|jm)}, determines an irre-
ducible representation of SU(2) and also the commutation relations (3.54) of the generators
or physically the angular momentum operators. The tensor product V;, ® V;, of two repre-
sentation spaces Vj,,V;, has a basis

71 ma)iljz ma)a. (3.137)

Associated with V;,,V;, there are two independent angular operators Jq,J2 both satisfying
the commutation relations (3.54)

[J1is J1,5] = d€ijnTik
[J2i J2,5] = i€ijido - (3.138)
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They may be extended to act on Vj, ® V;, since with the basis (3.137)
Ji=J1®1y, J1(ljrmad ljzma)2) = J1ljima) [j2ma)2,
Jo=110Ja,  Jo(ljimadi ljama)2) = [jrma )1 Joljzme)s . (3.139)
With this definition it is clear that they commute
[J1i, Joj]=0. (3.140)

The generator for the tensor product representation, or the total angular momentum oper-
ator, is then defined by
J=J1+Js. (3.141)

It is easy to see that this has the standard commutation relations (3.54).

In the space V;, ® V;, we may construct states which are standard basis states for the
total angular momentum |.JM) labelled by the eigenvalues of J2, J3,

J3|JM) = M|JM),
J2 M) = J(J+1)|JM). (3.142)

These states are chosen to be orthonormal so that
(J'M'\JM) =65500 0 (3.143)

and satisfy (3.77). All states in V;, ® V;, must be linear combinations of the basis states
(3.137) so that we may write

|[JM) =" |jimi)iljama)e (jimy jome|JM). (3.144)

mi,ma2

Here
(Jima jamal JM ), (3.145)

are Clebsch-Gordan coefficients®.

As J3 = Ji 3 + Ja 3 Clebsch-Gordan coefficients must vanish unless M = mq + mg. To
determine the possible values of J it is sufficient to find all highest weight states |J.J) in
Vj, ®Vj, such that

J3|JJ)=J|JJ), J|JJ)=0. (3.146)

We may then determine the states |JM) by applying J_ as in (3.80). There is clearly a
unique highest weight state with J = j; + jo given by

lJ1+d2 j1+i2) = |j1 1)1 g2 j2)2 s (3.147)

so that
(171 J2g2lin + j2 ju + j2) = 1. (3.148)

26Rudolf Friedrich Alfred Clebsch, 1833-1872, German. Paul Albert Gordan, 1837-1912, German.
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From |j1+72j1+72) states |j1+j2 M) for any M are obtained as in (3.80). Using J." =
A (:L) J17J M for n=1,... 41 + jo we may then derive

. _ [ (240)!(23)! (J - M)I(J + M) 3
i gzmal T M) = ( @) (1 —m)'(G1 +ma))!(J2 — ma)lj2 +m2))!)
J=j1+j2, M:m1+m2. (3149)

Clearly as well as (3.148) (j1—j1 j2—Jo|j1+7j2 —(J1+72)) = 1. We may then construct the states
|JM) for J = jy +ja - 1,... iteratively. Defining V(M) c V; ® V), to be the subspace for
which J3 has eigenvalue M then, since it has a basis as in (3.137) for all m; + mg = M, we
have, assuming 71 > jo, dim M) = j1+jo—M+1 for M > j; — jo and dim VM) = 272 + 1
for M < ji — jo. Assume all states |J'M) have been found as in (3.144) for ji +j2 > J' > J.
For j1 + jo > J > j1 — j2 there is a one dimensional subspace in V) which is orthogonal to
all states |J'J) for J < J' < j1 + j2. This subspace must be annihilated by J,, as otherwise
there would be too many states with M = J + 1, and hence there is a highest weight state
|JJ). In constructing a normalised |JJ) in terms of a real linear combination of the states
|71ma1)1|jama)2, J = m1 +ma there is an overall choice of sign, conventionally the coefficient
for the largest m; is positive. If M < j; — jo it is no longer possible to construct further
highest weight states. Hence we have shown, since the results must be symmetric in ji, jo,
that in V;, ® V;, there exists exactly one vector subspace V;, of dimension (2.J +1), for each
J-value in the range

Je{jp+jo,1+je—1,.... 51— Jo| + 1,151 - jol}, (3.150)
or
J1t+j2
VieV,= @ V. (3.151)
J=|j1-72|

If j1 > jo we can easily check that

Ji+72 Ji+j2
oI+ = > ((J+1)*-TJ%)
J=j1-j2 J=j1-J2
= (j1+j2+1)2 = (j1 - j2)? = (251 + 1) (252 + 1), (3.152)

so that the basis {|JM)} has the correct dimension to span the vector space V;, ® V;,. The
construction of |JM) states described above allows the Clebsch-Gordan coefficients to be
iteratively determined starting from J = j; + jo and then progressively for lower J as in
(3.150). By convention they are chosen to be real and for each J there is a standard choice
of the overall sign. With the common conventions

(j1ma jamal JM) = (=1)7*927 (jymy jrmy | J M),
= (~1)* 27 () —my jo—ma|J-M). (3.153)
The first arises since interchanging j; and js changes the overall sign whenever ji + jo — J
is odd, the second since construction of Clebsch-Gordan coefficients can equally be given

starting from |j1+72 —j1—Jj2) = |1 —j1)1 |72 —J2)2 instead of (3.147) but the sign prescription
changes as previously.
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For ji = ja = j the decomposition of the tensor product V;®V; in (3.151) can be separated
into contributions which are symmetric or antisymmetric under interchange

J Jj-1
j integral, V2Vj = (V; ®Vj)sym = P Von,, /\2Vj = (V; ® Vj)antisym = @ Vo1,
n=0 n=0

-1 -1
J=3

2
j half integral, V2V; = @ Vani1, A2V; = @ Van, (3.154)
n=0 n=0

As a check for j integral the total dimensions of the symmetric and antisymmetric subspaces
in V;®V; are then ¥ _ (4n+1) = (j +1)(2j + 1), ¥ (4n+3) = j(2j +1).

Since the original basis (3.137) and {|JM)} are both orthonormal we have the orthog-
onality /completeness conditions

> (Gima jama| IM)(jimy joma|J M) = 65 S

mi,m2

> (dama jama M ){j1m'y joam/s| TM) = Smymn Smaymr, - (3.155)
JM

Together with, from applying J. to (3.144),

NJM<j1m1 j2m2|JM:I:1> N]1m1 1(j1m1¥1j2m2]JM) + N

M:m1+m2¢1, (3156)

Jima jamaeF1|J M),

Jamo— 1<

these determine all Clebsch-Gordan coefficients up to a choice of sign. Using (3.155) (3.144)
can be inverted

[jima)iljame)e = Y [JM) (jima jamel JM) . (3.157)
I

For the tensor product representation defined on the tensor product space Vj ® V;,
we may use the Clebsch-Gordan coefficients as in (3.144) to give the decomposition into
irreducible representations for each J allowed by (3.150)

DY DY) (R)DY) (R) (jimi jams|J' M'Wjimi jama| JM) =8, D7) (R) .

my';my mof ;ma

(3.158)

For rotation matrices expressed in terms of Euler angles as in (3.99) the dependence on

¢, factorises and the relation holds when D;i,)m(R) - d%,)m(e) With the aid of the
orthogonality relations (3.155) this can be rewritten as

Z du) (0) q42) () (jimy jomd|jm’) = dv) (0) (jimq jamaljmi+me). (3.159)

mi'mi mo'mo m/mi+mo
mi’+mo=m'

3.7 Examples of the calculation of Clebsch-Gordan coefficients
A simple example where the Clebsch-Gordan coefficients can be quite easily calculated is

when j; = 7 and j = % so that there are 2(2j + 1) states altogether. In this case the
states can be combined using Clebsch-Gordan coefficients to form states with total angular
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momentum J = ] t5 L and the states |JM) are just linear combinations of |jm); and |2 )2
with m =M :F 5

In general then
43 mH+L) = ap [Fm); |5 3) + bm [ m+1); |3 -1),. (3.160)
As a consequence of (3.147) we must have

a;=1, b;=0. 3.161
J J

Applying J; to (3.160) we may directly obtain recurrence relations for a,,—1 in tems of a,,
and by,41 in terms of b, where using (3.77) and (3.79)

1 1
+m\? j—m—1)\2
am-1 = (— J ) A b1 = (]—) b . (3.162)
j+rm+1 j—-m
These are easily solved
1 1
1 1\2 5 2
T e L e (3.163)
25 +1 25 +1

where the normalisation of a,, is determined from (3.161). To check the normalisation of
by, it is sufficient to note that applying J_ to (3.160) also gives

b ! Y (Rl (3.164)
1= a —_— ) .
PN GEmADG-m)) "\ Gmmet) "

which is satisﬁed by (3.163). Clearly a_j_1 = O b_J 1 =1 so that |j+ j—%) =i-j) |% —%)2.
Also a2 + b2 = 1 which is necessary for | j+ m+s; ) to be normalised.

The corresponding states with J = j — 5 are orthogonal to the states defied in (3.160).
In this case it is sufficient to take

=g m+5) = b [im); |5 5)s + amjm+1); 5 -5),, (3.165)

where here m=j-1,57-2,...,—j5+1. This result is unique to within an overall phase which
we have taken in accordance With the so-called Condon and Shortley phase convention. We
may directly verify that J,|j-5 L ) 0 and that acting repeatedly with J_ respects the
conventions relating |j—1 M-1) to |j T M).

In the end the Clebsch-Gordan coefficients are then

J+m+1 (m___ + m— -m+1
2j+1 J J \/ 2]+1 ;

Gmisli-smed)= —EE.  Gmi-di-b —%>— g (3360

(jm 53li+z m+3)

ﬁ

The Condon and Shortley convention requires taking (jj ——l| 7 —% J=3) =/ 2]211 > 0.

—_

By combining the results in (3.166) with (3.159) for j; = j - 2, Jo =3 and using (3.105)
we may obtain

. i1 i1
Gm)2dd) (0)=(jxm)zcosi0d” 2 (0)+(jTm')isintod” 2 (0). (3.167)
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3.7.1 Construction of Singlet States

A special example of decomposition of tensor products is the construction of the singlet
states [00), which corresponds to the one-dimensional trivial representation and so is in-
variant under rotations. For V; ® Vj,, as is clear from (3.150) this is only possible for
j1 =j2 = j and the singlet state must have the general form

00) =" am |7 mh]j-m)s. (3.168)

Requiring J,|00) = 0 gives a,, = —a;,-1 so that, imposing the normalisation condition,

T, L o o 1
00) = ——=—== > (-1)"ljj-nhli—-j+n)2 = (jmj-m|00) =

V25 +1,2 V25 +1

Note that |00) is symmetric, antisymmetric under 1 < 2 according to whether 2j is even,
odd.

(-1)77™. (3.169)

3.7.2 Construction of Highest Weight States

The construction of [00) can be generalised to find all highest weight states |J J) contained
in V;, ® Vj,. These have the form

JJy=" > ljima)ilagme)a (jima jomalJJ). (3.170)

m1+m2=J
Requiring J,|J J) = 0 gives
Njﬂ—ﬂm—l (j1m1—1 j2m2|JJ) + N]ng—l (jlml j2m2—1|JJ) = O, (3.171)
which leads to

(j1 +m1)! (2 + ma2)!
(j1 = m1)! (j2 — ma2)!

1
. 2
(jlml j2m2|JJ> = (_1)]1—m1( ) A,hsz’ mi1 +mo = J. (3172)

For normalisation we require®”

i (j1+m1)!(j2+J—m1)!A' ‘J2
m1=J—j2(j1_ml)!(jQ—J+m1)! J1J2
_Gr=da+ D) Ga—di+ ) (Gr+ o+ J + 1))
(1 +j2 - D) (2 +1)!

Ajins?=1. (3.173)

where A; j,.7 = Aj,j, is given by the positive square root and |ji — jo| < J < ji1 + jo.

*"The required summation is obtained by using, for K > p, L > 0, ¥*_, (Fom)l(Lin)! LUK UK LD

. . . ) . ; n!(p-n)! p! (K+L-p+1)!
here K-p=jo—-ji+J,L=j1i-jo+J,p=J1+j2—J.
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3.7.3 Special Cases of Clebsch-Gordan Coefficients

A very similar discussion to that just given can be applied to obtain an expression for
(7171 jamalJM). Applying J, to (3.157) gives a two term relation for this Clebsch-Gordan
coefficient which requires

1
i —ma)! (J + M)\
(2 —mo)! (J + M) ) Bj g, j1+ma=M. (3.174)

(J1g1 jamal JM ) = ((j2 +ma)! (J - M)!

Bj j,  can be determined in terms of A; j,7, as given by (3.173), by taking M = J and
comparing with (3.172) for my = j;. This gives
1
(251)! (G2 =1+ J)! )2
(j1+j2—J)!(j1—j2+J)!(j1+j2+J+1)!

Bj g =(2J + 1)5( (3.175)

Results for Clebsch-Gordan coefficients may be derived by successively applying J_ to
(3.170) with (3.172). The expressions thereby obtained in general can not be reduced to a
single term. However applying J_7 to (3.170) and using from (3.80), for integer j and m > 0

, Jgm) =4/ E;fzg: |70) then for ji, jo,J integers

VEI0j:0170) = 3 (] )ppom e mpn ey

M0 (1 —m1)! (j2 —m2)!
= (-0 Gr—go— T =1+ 2r) (g1 +jo = T +2r) Ajjps
07 jl +j2 +J odd

(_1)%@1“’27‘]) (j1=d2+J)! (Ga—1+J)! (5 (J1+j2+]))! o
CGr—d2+ I R Ga—gr+ I (L Grrga—T))! 9120

J1+J2+J even.

(3.176)

3.8 37 Symbol

Besides (3.153) there are further symmetry relations for Clebsch-Gordan coefficients. Less
obviously

(j1m1j2m2|JM) :Cj1j2j (—1)j1_m1<jm1 J—M|j2—m2), m1+m2=M. (3.177)

The dependence on my,mg, M is dictated by the recurrence relations (3.156). Applying
these to (3.177), both sides agree as a consequence of N3 = N+ ., and where (-1)/*""™
provides a necessary sign flip in one term when m; — my + 1. The overall coefficient Cj, ;,s
is determined by setting m; = j; and using (3.174) so that

1
Bj,; 2J+1)?
Crjor = 2282 (2222 ) (3.178)
lejj2 2]2 +1

Defining a 8j symbol by
(jl J2 Js ) (=1)frsemms

= —————— (jimq jamsljs—ms3), mi+mg+ms3=0, 3.179
my e s e (F1m1 jamaljz —ms3) 1+ma +ms3 ( )
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then (3.153) and (3.177) ensure

(]’1 J2 j3):(_1)j1+j2+j3(j2 J j3):(_1)j1+j2+ﬂ‘3(j1 73 jQ). (3.180)

mip M2 Mm3 ma M1 M3 mip Mm3 Mm2

These further entail that the 35 symbols are invariant under cyclic permutations and also
for m; - —m; from (3.153) it follows that

(jl J2 J3 ) _ (_1)j1+j2+j3 ( J1 J2 Js ) . (3.181)

mp mz M3 -mp —m2 -Mg

Hence, although equivalent to Clebsch-Gordan coefficients, 35 symbols are much nicer. They

are non zero only if ji, j2, j3 satisfy triangular inequalities |j1 —jo| < j3 < 71 +72 and j1 +j2+73

is an integer. These symmetries are reflected by A, /(2j1 + 1)% = Bjj,g/(2J + 1)% =
. 1

Bj7ja [ (2j2+1)2.

Many results for 35 symbols can be simply expressed diagrammatically

J2,m2

JioJ2 g3\ _ A
(m1 mo m3) - >—F]37m3 ’ (3.182)

J1,ma

where the diagram is invariant under rotation and for a non zero result ), m; = 0. For later
convenience we also define
J2,ma

. _(_qyeems [ J1 J2 U3
J3,m3 ( 1) (Tn/1 m2 _m3), (3183)

Ji,ma

and similarly for other lines. With this convention from (3.181) }-»— = }—«—

The orthogonality conditions in (3.155), using (3.181), can then be reexpressed in the
form

3 (_1)Z(ji+mz‘) JjioJ2 3 gz ogsy_ _1 Siiid ,
mz2,m3 —mi —m2 —ms3 ml' mo M3 2j1+1 Jijrymimi s
J2,ma2
> Ji,mi Jmt = s jimy —— i my
ma,ms } ) 2]1+1 Ji,mi1 J1,mi 9
J3,ms3

ng,m3(2j3 + 1)(_1)Zi(ji+mi)( Ji o j2 J3 )( Ji J2 J3 ) _ 6m1m1’6m2m2’7

-m1 —mo —-m3 m1 mgo ms

J2,m2 j1,ma’ , o,
Ji,mi ——— j1,m1
ng’m3(2]3 +1) - = . (3.184)
gama X ja;ma ——— jo,myd
jl,ml J2,m2

For each summation ¥,,(=1)7*™|j—m)|jm) generates an angular momentum singlet.
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The essential normalisation of the 37 symbols is then diagrammatically expressed as
J1,mi

C\Zi(GGirmg) (1 J2 g3 Juoj2 g3\ _ _
Zm’( 1) e (—m1 -mo —m3)(m1 ma ms)_Zmi =1. (3-185)

As a special case from (3.173) and (3.176), for ji, jo, js integers,

1
i1 J2 J 2k1)! (2k2)! (2k3)!'\? !
(]1 J2 903) _ (_I)J(( 1)! (2k2)! (2k3) ) J 1+j2+j3 =2J, ki =J-j;, (3.186)

0 0 (27 + 1)! Kl kolks!” ”
for J an integer.

If we consider the tensor product space V;, ® V;, ® V;,, then so long as ji1, j2, j3 obey the
required conditions, we may form a singlet state by

JioJ2 I3\, : _
00) = J1ma)1lj2ma)aljz ms)s . 3.187
‘ > ml,é,WS (m1 mo m3) | ) ’ | ( )
This is a singlet since, coupling first |j; mq)1]|jeme)2 to form a state |jz—mg3), we have
(j1 J2 U3

mi ms) = (=1)71792%93(jymy jomaljs —ms){(js—ms j3ms|00) using (3.169).

3.9 65 Symbol

3j symbols can be combined to form invariants which can be represented by vacuum graphs
with trivalent vertices. The simplest defines the normalisation as in (3.185). The graph
with 4 vertices defines the 65 symbol as in

{jl J2 Jjs } _ Z (_1)Zi(j,-+mi+ki+ni)( J1 ke ks )( ki j2 ks )(kl k2 33 )(jl J2 J3 )
k1 k2 ks . -my1 n2 -n3 -n1 —ma n3 ni —ng —ms3 m1 ma ms
29102

ko,no

= k1,n1 or

, (3.188)

k3,n3

where the sums over n;,m; are constrained by the 4 linear conditions necessary for non
vanishing 35 symbols. Due to these constraints there are just two non trivial summations.
This is non zero so long as j;, k; satisfy the triangle inequalities corresponding to them being
the edge lengths of the dual tetrahedron, obtained in the above picture by tasking j; < k;
for each 7, in Euclidean space and the sum of the three j;, k; incident at each vertex is an
integer. Since );m; = 0 in any non zero contribution the associated sign factor can be
dropped. Using the symmetries in (3.180) and (3.181)

{jlj2j3}_{j2j1jS}_{ijle}_{klejii} (3.189)
k1 ko k3 ko ki1 ks ks ki k2 g g2 ks ‘
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so that the 65 symbol is invariant under permutations of columns and interchanging the
upper and lower elements of any two columns. These correspond to any permutations of
vertices in the figure in (3.188) so they generate the tetrahedral symmetry group Sy.

Directly from (3.188)

Z (_1)Zi(ji+mi+ki+ni)( 1 k2 k3)(k’1 Jj2 ks )( ki ko js ) g’ ja Js
-m1 —ng2 N3 ny —mo —n3 -n1 ny —ms

!
m1’ mg m
ni, mq fixed L mz ms

_[J1 2 3 1 P
T Lk ko ks 271+ 711 9mima’

) _ (1 J2 J3 1. )
ji'mi = {k1 Ky ks } 35,51 J1ma —— gi'mi . (3.190)

Z Ji,ma

n;, mifixed

Multiplying with (27 +1)(-1)71*™ ( gl gz s ) and summing j;’, my’, using (3.184), gives

my’ mg’ m3
the vertex relation

Z (_I)Zi(kﬁm) ( J1 k2 k3 )( ki1 j2 k3)(l€1 ka  j3 ) _ {jl J2 j3}( J1 j2 J3 )
mi1 n2 —n3 -n1 me n3 ni —ngz ms3 k1 ko k3 m1 ma m3 )’

n;, m; fixed

J2,m2 .
kz,na J2,mz2
Z (_1)Zi(ki+ni) g1,m1 kimy = {]1 2 j3} Ji,m1 . (3.191)
n;, m; fixed k2,2 ke ks j
) J3,m3
J3,1M3

By using the orthogonality relations further this leads to the crossing relations

(_1)J+M g1 ja J jz j2 J - x ,(_1)J’+M’(j1 J2 J')(j3 ja J’' )7
(2 2 2 T

mi mg -M ms3 mo M m1 mo M’ ms mg —M’

e
M=mi+my, M =mz+mq, Yym;=0, Xgp=(2J +1)(-1)¥ {71 ” J,} . (3.192)
J3 J4
where the summation over J' is constrained by j;, J, J' forming a tetrahedron, J' > |M'| and
221:1 Ji is an integer. Diagrammatically

Ja,ma J2,m2 j2,mao o j3,m3
JM = E XJJ/ >—)—< . (3193)
J! Ji,m1 Ja,ma4

Ja,ma Jji,ma

The 65 symbols play a crucial role in the decomposition of three spins. Tensor products
are associative so that Vj, ® (V;, ® V),) =~ (Vj, ® V;,) ® Vj, but different bases for given total
angular momentum j4 are formed according to whether we decompose V;, ® V;, = @V or
Vi, ®V;, =@y V. The 6 symbols relate the two bases. Generalisations of 65 symbols can
be obtained by considering further vacuum diagrams with trivalent vertices which are not
reducible using 65 symbol relations.
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3.9.1 Crossing Relations

The relation (3.193) leads to identities for 6 symbols. We first consider such relations more
generically where we consider couplings between four vectors, labelled by a,b,c,d, which
are expressible diagrammatically, where here the lines do not carry any arrows, as

b c c b a d
a d d a b c

corresponding to a Zs x Zs symmetry. The crossing equations then take the form

b c b
I abcd > < Z abcd >: < ] (3 195)
a d d

Consistency with (3.194) requires
Xabed _ xbade _ ydeba yobed _ yrdeba _ yredab. (3.196)
Applying (3.195) repeatedly gives the crossing relations
5 Xobed xcbad _ 5 ZKyLYt;zbcdybcachabd Siars (3.197)

with the condition
ZKLXabcd chad bacd ZK abcd bcad ) (3198)

These ensure X and Y generate S3 corresponding to permutations of a,b, c. For S3 defined
abstractly by elements a,b such that a® = b> = e, ba® = ab it is evident that these relations
correspond to (3.197) and (3.198) with Y ~a, X ~b.

In terms of 65 symbols these results are applicable by taking

X = I (1) {2 ) Y I ) (e (28

J3 ja J J2 Ja J
(3.199)
(3.196) is modified to
X?IJ(QBM _ (_1)2KX§QI](1]4]3 - (_1)2JX§A;J(3J2]1 7
Y}}(jzja’ﬂ - (_1)2J ngﬁjzjl _ (_1)2J+2Kyjig4j1j2 : (3.200)

and (3.197) reduces to

Z(2J+1)(2K+1){“ A S Bt B 7S

J3 Ja J 1 ja K

_\J+K+L Jrg3 K\ (jesr L\ [J3je MY _
KZL( 1) (2] + 1)(2K+1)(2L+1){j2 . J}{j3 j4K}{j1 h L b=dm. (3.201)

Subject to (3.189) these are equivalent to standard identities for 65 symbols. Furthermore
Z Yj%233]4X;?i2]134 — (_1)j2+j3+J5JL . (3202)
K
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3.10 Tensor Products and Characters

The decomposition of tensor products can equally be determined in terms of the characters
given in (3.132)

J2 ) 1 J2 ] L ' )
—im0 m+3)6 —ir+m+1)0
Xj1(0) ij(g) = Xj1(0) m;j; = mm;b(e(j” +3)0 _ 6( Jitm+s) )
j1+j2 j1+j2
= > @)= 3 X0, (3.203)
J=j1-j2 J=li1-72|

where if jo > j1 we use x_;(0) = —x;-1(0) to show all contributions to the sum for j < jo - ji
cancel. Comparing with (2.85) the result of this character calculation of course matches the
tensor product decomposition given in (3.152).

For the symmetric and antisymmetric tensor products of the j representation from (2.92)

Lj]
X\/ij(e) = %(X](Q)Q + Xj(ze)) = ZOXQj—Zn(Q)a

L5
Xp2y, (0) = 300 (0)° = x;(20)) = §X2j7172n(9), (3.204)

using (3.135). This of course agrees with (3.154).

The results can be extended to three fold tensor products

Ji+j2+73
X1 (0) ij(e) Xj2(9) = Z Ny XJ(H) )
J=j1-j2-7J3
NJ: min{2j2+1,2j3+1,j1+j2+j3—J+1,j2+j3—j1+J+1}. (3205)

Although not manifestly symmetric cancellations arising from terms in the sum for J < 0
ensure it is so. For equal integer j

j 3j
i (02 =Y 2T+ Dxs+ > (Bi-J+1)xs. (3.206)
J=0 J=j+1

For j half integer a similar result obtains but with the first sum starting at J = % From
(2.92)

X\3 (9) 1 3

00} = B0 (00 330, (9, (260) + 233, 30)) (3.207)

giving, for j an integer,

2j j-1 13G-1)) [1G-1)]

Xysy, = S (1+[gkDxsj—e+ 2 (L+ 155Xk — Y Xsjoek-1— ». Xj-2k-1, 3 >1,
k=0 k=0 k=0 k=0
2j-2 : j-2 ) 133-2)] [33G-2)]

Xpsy, = >(1+ [ng)X&j—k—:a + 3 (1+ [ng)Xk = > Xsj6k-4— P, Xj-2k-2, J>2,
k=0 k=0 k=0 k=0

(3.208)
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while x A3y, = X0 For half integer j

2j j-1 [54]
Xysy, = Y1+ 15k]) X35k + 2(1 +13(k=1))xk - X3j-6k-1, >3,
k=0 k=3 k=0
2j-3 j-1 15G-2)]
Xpay, = S (1+ 2k xsjn-s+ > (1+[3(k=D])xe = >, Xsjoek-a, J=2, (3.209)
k=0 k:% k=0

with, for j = 3, Xvay, = X3 + X3 + X3, Xpay, = X2 and for j = 3, xvsy, =Xz, Xpay, =0-

3.11 SO(3) Tensors

In the standard treatment of rotations vectors and tensors play an essential role. For
R = [R;;] and SO(3) rotation then a vector is required to transform as

Vi V' =R;;V;. (3.210)

Vectors then give a three dimensional representation space V. A rank n tensor Tj,. ;, is
then defined as belonging to the n-fold tensor product V ® --- ® V and hence satisfy the
transformation rule

Ti i, s T .in = Riyjy - Riy 5, Tjy g, - (3.211)
It is easy to see the dimension of the representation space, V(®V)"_1, formed by rank n
tensors, is 3". For n = 0 we have a scalar which is invariant and n = 1 corresponds to
a vector. The crucial property of rotational tensors is that they be multiplied to form
tensors of higher rank, for two vectors U;, V; then U;V; is a rank two tensor, and also that
contraction of indices preserves tensorial properties essential because for any two vectors
U,V; is a scalar and invariant under rotations, U’;V’; = U;V;. The rank n tensor vector space
then has an invariant scalar product 7 - S formed by contracting all indices on any pair of
rank n tensors 13, 4., Siy..in-

In tensorial analysis invariant tensors, satisfying I';, ;. = I;,. s, are of critical impor-
tance. For rotations we have the Kronecker delta d;;

8% = RirRjr, = dij (3.212)
as a consequence of the orthogonality property (3.1), and also the e-symbol
5,z‘jk = Rij Rjm Riy €tmn = det R g5 = €4 (3.213)

if R e SO(3). Any higher rank invariant tensor is formed in terms of Kronecker deltas and
e-symbols, for rank 2n we may use n Kronecker deltas and for rank 2n + 3, n Kronecker
deltas and one e-symbol, since two e-symbols can always be reduced to combinations of
Kronecker deltas.

Using 6;; and e;;; we may reduce tensors to ones of lower rank. Thus for a rank two
tensor T, Tj; = 055155, which corresponds to the trace of the associated matrix, is rank zero
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and thus a scalar, and V; = %eijijk is a vector. Hence the 9 dimensional space formed
by rank two tensors contains invariant, under rotations, subspaces of dimension one and
dimension three formed by these scalars and vectors. In consequence rank 2 tensors do not
form an irreducible representation space for rotations.

To demonstrate the decomposition of rank 2 tensors into irreducible components we
write it as a sum of symmetric and antisymmetric tensors and re-express the latter as a
vector. Separating out the trace of the symmetric tensor then gives

Tyj = Sij + €ije Vi + 505 Tk » (3.214)

for
Sij = Taj) = 3% Trks Vi = 58T (3.215)
Each term in (3.214) transforms independently under rotations, so that for T;; — T,

Si;i = S, Vie > V%, Tk > T'xi, = Txr. The tensors Sj; are symmetric and traceless, Sy = 0,
and it is easy to see that they span a space of dimension 5.

These considerations may be generalised to higher rank but it is necessary to identify
for each n those conditions on rank n tensors that ensure they form an irreducible space. If
Si, .4, is to be irreducible under rotations then all lower rank tensors formed using invariant
tensors must vanish. Hence we require

0iisSir.in =0, €jiyisSir.ip =0, forall 7,5, 1<r<s<n. (3.216)
These conditions on the tensor S are easy to solve, it is necessary only that it is symmetric
Siteviin = S(iy.nin) - (3.217)

and also traceless on any pair of indices. With the symmetry condition (3.217) it is sufficient
to require just
Siy.injj = 0. (3.218)

Such tensors then span a space V,, which is irreducible.
To count the dimension of V,, we first consider only symmetric tensors satisfying (3.217),
belonging to the symmetrised n-fold tensor product, sym(V ® --- ® V). Because of the

symmetry not all tensors are independent of course, any tensor with r indices 1, s indices
2 and t indices 3 will be equal to

S1.12.23.3 where rs,t>0, r+s+t=n. (3.219)

Independent rank n symmetric tensors may then be counted by counting all r, s, ¢ satisfying
the conditions in (3.219), hence this gives

dim (sym(V®---®V)) = 1(n+1)(n+2). (3.220)

n

To take the traceless conditions (3.218) into account it is sufficient, since taking the trace of
rank n symmetric tensors gives rank n—2 symmetric tensors spanning a space of dimension
%(n —1)n, to subtract the dimension for rank n — 2 symmetric tensors giving

dimV, = $(n+1)(n+2)-i(n-1)n=2n+1. (3.221)
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Thus this irreducible space V,, may be identified with the representation space j = n, with
n an integer.

For any rank n symmetric tensor S;, ;, there is a one to one correspondence with
homogeneous polynomials of degree n in x,

Sil...in <~ S(n) (X) = Sil...inxil . .’L’in y (3222)

and
Sivinaji=0 = vV2SMW(x)=0, (3.223)

where S(") is then a harmonic function. As a particular case we have

SM(x) = (t-x)" for t2=0, (3.224)
where t is any complex null vector. Since from (3.55)

L? = x’V?+x-V(x-V+1). (3.225)
and x- VS (x) = n.S((x) we have for harmonic polynomials

L2S™M(x) = n(n+1) 5™ (x), (3.226)

so that symmetric traceless tensors or harmonic polynomials of degree n correspond to
angular momentum n for any integer n. Clearly S (x) = |x|*S(™ (%) for % = x/|x| and as
Lix| =0 (3.226) reduces to

L2S™M (%) =n(n+1) 8™ (x), (3.227)

With two symmetric traceless tensors Si;,. 4, and Sa;, i, then their product can be
decomposed into symmetric traceless tensors by using the invariant tensors d;;, €51, gener-
alising (3.214) and (3.215). Assuming n > m, and using only one e-symbol since two may
be reduced to Kronecker deltas, we may construct the following symmetric tensors

S1,(i1inr 1 O2yin i1 owrinsm-20) f1r r=0,...m,

Ejk(ir Lyin.in-r 1dr § 9% inritominsmtiar) j1odr k3 r=0,...m-1. (3.228)

For each symmetric tensor there is a corresponding one which is traceless obtained by
subtracting appropriate combinations of lower order tensors in conjunction with Kronecker
deltas, as in (3.215) for the simplest case of rank two. Hence the product of the two
symmetric tensors of rank n,m decomposes into irreducible tensors of rank n + m —r,
r=0,1,...,m, in accord with general angular momentum product rules.

In quantum mechanics we may extend the notion of a tensor to operators acting on the
quantum mechanical vector space. For a vector operator we require

ULRIV;U[R]™ = (R™Y);;V5, (3.229)
as in (3.58), while for a rank n tensor operator

U[R]T;,..:, UIR] ™ = (R Yisjy - (B )i Ty - (3.230)
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These may be decomposed into irreducible tensor operators as above. For infinitesimal
rotations as in (3.16), with U[R] correspondingly given by (3.50), then (3.229) gives

[Ji, Vi] =ieiji Vi, (3.231)
which is an alternative definition of a vector operator. From (3.230) we similarly get
[Jis Tjrjo.gin] = €051k T kg ju + 8 €1k Thsh g + - + 1 €05,k Tjrjo. k- (3.232)

The operators x,p are examples of vector operators for the angular momentum operator
given by L = x x p where [z;, p;] = i0;;.

3.11.1 Spherical Harmonics

Rank n symmetric traceless tensors are directly related to spherical harmonics. If we choose
an orthonormal basis for such tensors SZ(ITLTTL), labelled by m taking 2n+1 values and satisfying

Snm) . gnm') o 6mm’, then the basis may be used to define a corresponding complete set
of orthogonal spherical harmonics on the unit sphere, depending on a unit vector x € S?, by

Yo (%) = ST g0y (3.233)

i1...0n
For a standard basis we require m is an integer with —n <m <n and
L.Ypm(X) = Ny YVime1 (X)), LY, (X) =m Y, (%), (3.234)

where L, L3 are the angular momentum operators acting on functions of x and N7, is
defined in (3.79). Defining

T =3 +idy, T=&y—idy, 2z=43, cTT+2°=1, (3.235)

then o 0 o 0 o 0
Li=o2 22, Li=2l42:9 -z 2.9 3.236
STV Yo TV oz Y0r T or (3:236)

In terms of usual spherical polar coordinates z = cosf, x = sinf e'?, Z = sinf e™*¢.

Spherical harmonics can be expressed in the form

(=)™ ppm(2), m>0,

o (3.237)
T pn\m|(z)7 m<0,

Yom(X) = {

where ppm(2), 0 < m < n, is a polynomial of degree n —m and Y, (X)* = (=1)" Y- (X)
This expression automatically satisfies the L equation in (3.234) and from the L, equations

d d _
&pnm(z) =Ny Pnm+1(2), —(1- ZQ)apnm(z) +2m z2pum(2) = Ny Pum-1(2) . (3.238)
Hence, since N,,,, N} =(n+m)(n-m+1),
d d d
(&(1 - zQ)E - 2mza +(n-m)(n+m+ 1))pnm(z) =0. (3.239)
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Regular solutions are given in terms of Gegenbauer polynomials which may be defined in
terms of the generating function

(1-2zr+7r ) =2, CA )", CM=2) = (-1)"C M 2). (3.240)
Since G, (2) = 2ACML(2), ((2m - 1)1 = (2m)!/(2™m!) = (2m -1)(2m - 3)...1),

(n-m)!

mal
Prm(2) = an (2m = D)1\ [ (i €102 (7). (3.241)

Spherical harmonics are also expressible in terms of a generating function

t-x

e, t-x= v(z—l)\a:+2/\ ) (3.242)
with x defined in terms of z, Z, z as in (3.235). With (3.236) we have

.1 . . .
Lse )\3 et L,et™=— vg + )\ﬂ et*, L_et™ =)\ v3 - )\ﬂ et*, (3.243)
o\ A
then as t, as defined by (3.242), is a null vector so that, for arbitrary v, \, (t-%)" is a
harmonic function we can expand the exponential in the form

= Ym0 L bnm VAT Yo (X)) - (3.244)
3.234) is satisfied so long as
( ) g
(n+m+1)byms1 =Nyt bpm,  (n=m+1)bpm-1 =N, bum , (3.245)
or
bn
bom = (3.246)

V(n—m)!(n+m)! '

The coefficients by, or a, in (3.241), depend on the normalisation of Y, for differing
n. It is conventional to impose

f AQ Vi (R) Yot (R)* = S Grmmr 3 OF / AQ Vo (R) Yot (R) = (=1)™ 8o Gy
(3. 247)
On integration over S? Lsf = L, Lt = L_.

The required normalisation to ensure (3.247) can be derived by considering the three
dimensional integrals

f B e HRx 2 pf etk o f Bz e ™ (k-x)2" = ié%i‘ (k3™ (3.248)

Since dz = r2dr dQ and using [, dr p2nt2emr? 2 %F(n + %) we obtain

2n 1 4m
9 (x-%)? gzn)‘() K" = T () (D= F 3 (Gen). (3.249)
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If now k = tq + to with t2 =t5* = 0, so that kZ=2t; -to, then
n!?

(2n+1)!

For t1, to as defined in (3.242) and expanding [, dQ et1%+t2%

[S A (b1 %) (b2-%)" = B A (261 - t)" . (3.250)

S Db 0" AN f 40 Y (%) Yo (9= % 5 (261 -t2)", (3.251)

n,m,n’,m’ 1)'
where o
2t by = ——— ()\1 - X2)?, (3.252)
so that (2n)
7 2n)’ )\1
2t -t2)" = " . 3.253
(21 -t2)" = (v1v2) m;n (n_m)!(ner)!( )\2) (3.253)
Hence ensuring (3.247) gives
4 1 4 3
2
Drim by = —— = by=|—]|. (3.254)
2n+1 (n—-m)!(n+m)! 2n+1

From (3.244) we have by, Yy, (X) = %(—%x)” while from the solution given by (3.237)
and (3.241) Ypn (%) = an(2n - DHN/{/(2n)! (=)™ which requires a,b, = 1. The expansion
(3.244), with by, determined by (3.246) and (3.254), is ascribed to Herglotz.?®

These results can be extended to the integral of three spherical harmonics. Taking
k = t; + to + t3 with t; three null vectors

[dQ (t1-3)™ (b2 - 3)™ (b3 X)m n!  nilng!ng! ks Ky ko
(2n+1)' NN (2t1 -t2)™ (2t - t3)" (2t - t3)
ni+mno+n3=2n, ki=n—-n;. (3.255)

We then have

by bramabrsmy [ 4D Yoy (%) Vg (%) Vs (%)

4w n! 3 (~1)% (2k;)!
C@n+1)! Kl kol ksl 0 in (Ki = bi)! (ki + by)!

(3.256)

b1—-b2=mg,ba—bg=m1,bz—b1=m2

This is non zero only when ) ; m; = 0. For m; = 0 then b; = b and the sum can be evaluated
using

Z (_1)b 1 B (k1+k‘2+k3)!
, 15, (ks — b)! (ks + b)! (K1 + ko)t (ko + K3 )! (K3 + oy )V ey Lol Kg!

—min k;<b<min k;

(3.257)

28Gustav Herglotz, 1881-1953, German.
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Hence, since byo =/ Qi—’:l/n!, and with the result (3.186)

(2n1 +1)(2ng +1)(2n3 + 1) )é (m ng n3

2
fs a0 Ynlo(ﬁ)Ymo(&)Yn3o(ﬁ):( - o o) . (3.258)

For arbitrary m;, .; m; = 0, it then follows that
89 Va0, (50) Vs (5) Yoy, (%)

_ ((2%1 + 1)(2712 + 1)(277,3 + 1) )é (m n9 Tl3) (m n9 n3)

41 0 0 0 m1 Mg M3

(3.259)

since the dependence on m; on both sides is identical from (3.234) and the recurrence
identities for 3j symbols following from (3.156).

3.12 Molien Series for SU(2)

The Molien series in (2.100) can be readily extended to the continuous group SU(2) by
replacing the finite sum over group elements by the corresponding invariant integegration.
Since the formula only involves a sum over conjugacy classes in this case it reduces, for the
representation j of dimension 25 + 1, to

1

Moy (€21, 1) - % fO%ée (1- cosf) =GN (3.260)
where the choice of n is irelevant so that from (3.131) we may use
det (1 -t D(0,2)) = TT,__;(1-te'™). (3.261)
For integer spin the result reduces to the series for SO(3). In this case with z = e
Mo (R 1) = % B T ) [C2C M Gl | U ) (3.262)
=t 4mi Jz|=1 [ _(zm=t)(1—tzm)

For |t| < 1 this can be evaluated by summing the residues of the poles arising at 2" = ¢ and
also for j =0,1 at z =0. This gives for j =0,1,2

1

1 3 1 5
Msos)(R,t) = 1 ¢’ Mo (R”,t) = T2 Mgo(3)(R,t) =
For (x1,x2,73) € R the fundamental invariant is just x2. The representation for j = 2 acts
on the five dimensional space formed by traceless symmetric tensors 7;; and the fundamental
primary invariants are tr(7?), tr(7?). For larger integer j the results become complicated
and there is no simple general formula.

For half integer spin it is covenient to extend the integration to be from 0 to 47 and the

. 1
with w = e'2?

2 -2
Moy (C,0) = 1§ quwt-dorh __(=whA-w?)
47y |w|=1 Hin_l (/w2m _ t)(l _ t/me)

=3

(3.264)
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As special cases for j = %, %

1

MSU(Q)((CQ,t) = 17 MSU(Q)(C47t) = 1 4 :

(3.265)

There are no invariants for the two dimensional spin—% but there is one of order 4 for spin—%.

Quantum fields with half integer spin are anticommuting so it is more natural to use
(2.112) to count invariants in this case. As above this can be reduced to a contour integral
analogous to (3.263) but only poles at w = 0 are relevant. The lowest cases are

Msyoy(M*, 1) =1+¢*,  Mgyey(M*,t) =1+ +¢". (3.266)

There is now a quadratic invariant since (V% ®V% )amisym > V. For j = g the obvious pattern
does not extend since there are then two quartic and two sextic invariants. Extending to
integer j

Mgoy(MP,6) =1+1%,  Mgogy(M°,t) =1+¢°, (3.267)

where the first result reflects the existence of the invariant tensor €.

3.13 Irreducible Tensor Operators

An alternative basis for irreducible tensor operators is achieved by requiring them to trans-
form similarly to the angular momentum states |j m). An irreducible tensor operator in the
standard angular momentum basis satisfies

Definition: The set of (2k + 1) operators {T},} for

ke{0,3,1,3,...}, (3.268)
and
qe{-k,~k+1,... k-1Fk}, (3.269)

for each k in (3.268), constitute a tensor operator of rank k if they satisfy the commutation
relations

[J37 qu] = quq»
[J:l: ) Tk‘q] = Nkiq qu:tl ) (3270)

with N given by (3.79). This definition is of course modelled exactly on that for the |jm)
states in (3.75) and (3.77) and ensures that we may treat it, from the point of view of its
angular moment properties, just like a state |k q).

Examples:
If £ =0 then ¢ =0 and hence [J, Tog] =0, i.e. Ty is just a scalar operator.

If £ =1 then setting
Vi ==/30i£iV%),  Vio= W, (3.271)
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ensures that Vi, satisfy (3.270) for k£ =1 as a consequence of (3.231).

If k£ = 2 we may form an irreducible tensor operator Tb, from two vectors V;, U; using
Clebsch-Gordan coefficients

Tog= Y. VimUim (Im1m'|2g), (3.272)

m,m’

with Vi, Urpy defined as in (3.271). This gives

Too =Vi1Ury, Toy = \/g(VnUm +VioUm1),
Tho = \/g(V11U1-1 +2VipUro + Vi-1U11)
Ty = \/g(VlOUl—l +Vi-1Un), Top=ViaaUr. (3.273)

The individual T, may all be expressed in terms of components of the symmetric traceless
tensor Sij = V(in) - %5@' Vi.Ug.

For irreducible tensor operators T}, their matrix elements with respect to states |a, j m),
where « are any extra labels necessary to specify the states in addition to jm, are constrained
by the theorem:

Wigner-Eckart Theorem®

(a',j'm'|qu|a,jm> = <.7m kq|j,m,> C, (3274)
with (jm kq|j’m') a Clebsch-Gordan coefficient. The crucial features of this result are:

(i) The dependence of the matrix element on m,q and m’ is contained in the Clebsch-
Gordan coefficient, and so is known completely. This ensures that the matrix element is
non zero only if j e {j+k,j+k—-1,...,]7 - k|+1,|7 — K|}

(7i) The coefficient C' depends only on j,j’,k and on the particular operator and states
involved. It may be written as
C =(j'|Tllevs) (3.275)

and is referred to as a reduced matrix element.

The case k = ¢ = 0 is an important special case. If [J, Tpo] = 0, then Ty is scalar
operator and we we have
(3" m/[Toolax, jm) = (jm 00]5'm’) (@ j'||Tol|exs)
= 05 Omm (@' [|Tollews) (3.276)
with reduced matrix-element independent of m.
To prove the Wigner-Eckart theorem we first note that Tjq|cr, j m) transforms under the

action of the angular momentum operator J just like the product state |k q)1|j m)2 under
the combined J; + J9. Hence

3 Tiglev, jm) (kqjmlJM) = |T M) (3.217)

q?m

29Carl Henry Eckart, 1902-1973, American.
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defines a set of states {|J M)} satisfying, by virtue of the definition of Clebsch-Gordan
coefficients in (3.144),

J3|J M) = M|J M), Jo|J M) = N3y M+1). (3.278)
Although the states |J M) are not normalised, it follows then that
(o, j'm'|T M) = Cydjs0mm (3.279)
defines a constant C'; which is independent of m’, M. To verify this we note
(o, JM|J M)N7p_q ={a’, JM|J.|J M-1)
= (o, JM|J 1T M-1) = (a/, JM-1|J M=1)N7,, . (3.280)

Since N7,,_, = N, we then have (o', JM|J M) = (o', JM-1|J M~-1) so that, for m' = M,
(3.279) is independent of M. Inverting (3.277)

Tl jm) = > |J M)(kq jm|JM), (3.281)
JM

and then taking the matrix element with (a/, j'm/| gives the Wigner-Eckart theorem, using
(3.279), with Cj = (a'j"||Tk||cvj)-

3.14 Spinors

For the rotation groups there are spinorial representations as well as those which can be
described in terms of tensors, which are essentially all those which can be formed from
multiple tensor products of vectors. For SO(3), spinorial representations involve j being
half integral and are obtained from the fundamental representation for SU(2).

For the moment we generalise to A = [A,”] € SU(r), satisfying (3.28), and consider a
vector 7 belonging to the r-dimensional representation space for the fundamental represen-
tation and transforming as

Mo = Mo = Aag. (3.282)

The extension to a tensor with n indices is straightforward
Voo 7 Voran =A™ - Aa, ™5, g, (3.283)

Since A is unitary
(Aa”)" = (A7)5". (3.284)

The complex conjugation of (3.282) defines a transformation corresponding to the conjugate
representation. If we define

1" =(1a)" (3.285)

then using (3.284) allows the conjugate transformation rule to be written as

7" = (A7) (3.286)
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It is clear then that 77, is a scalar. A general tensor may have both upper and lower
indices, of course each upper index transforms as (3.282), each lower one as (3.286).

As with the previous discussion of tensors it is critical to identify the invariant tensors.
For the case when A € SU(2) and «,3 = 1,2 we have the two-dimensional e-symbols,
g = _gBa 12 21 and €aB8 = —€Ba, Where it is convenient to take €12 = —1. To verify e,
is invariant under the transformation corresponding to A we use

s = AV Ag’e s =det Acyg =05 for AeSU(2), (3.287)

and similarly for €*?. The Kronecker delta also forms an invariant tensor if there is one
lower and one upper index since,

607 = Aa16,0(A™)s7 = 6,7 (3.288)
For this two-dimensional case, with the preceding conventions, we have the relations

£ap €1’ = =02705° +0,°057,  caye?’ =84". (3.289)

Rank n tensors as in (3.283) here span a vector space of dimension 2". To obtain
an irreducible vector space under SU (2) transformations we require that contractions with
invariant tensors of lower rank give zero. For ¢, 4, it is sufficient to impose e*"** ¢, .q,, =
0 for all r <s. The irreducible tensors must then be totally symmetric ¢a,..a, = P(a;...an)-
To count these we may restrict to those of the form

¢1.12.2 where r=0,....,n, r+s=mn. (3.290)

T s

Hence there are n + 1 independent symmetric tensors ¢, .. ., S0 that the representation
corresponds to j = %n

The SU(2) vectors 1, and also 7% form SO(3) spinors. For this case the two index
invariant tensors e*? and €q3 may be used to raise and lower indices. Hence we may define

n*=e*ng, (3.291)
which transforms as in (3.286) and correspondingly
Mo = Eapl s (3.292)

As a consequence of (3.289) raising and then lowering an index leaves the spinors 7, un-
changed, and similarly for #%. In general the freedom to lower indices ensures that only
SU(2) tensors with lower indices, as in (3.283), need be considered.

For an infinitesimal SU (2) transformation, with A as in (3.37), the corresponding change
in a spinor arising from the transformation (3.282) is

e = —i00 L (n- ) ns. (3.293)

For a tensor then correspondingly from (3.283)

n
0Va;..an = 100 Z %(n : U)arﬂ¢a1---ar—lﬁar+1---a’n ) (3.294)

r=1
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where there is a sum over contributions for each separate index.

Making use of (3.289) we have
£eps 0.’ = 05, (3.295)
since tr(o) = 0. From (3.295) we get
g, =P (3.296)

showing that (¢o)®’ form a set of three symmetric 2 x 2 matrices. Similar considerations
also apply to (o¢)a3. The completeness relations for Pauli matrices can be expressed as

(0€)ap - (o) =45, 655 +6,0 857, (o) (e0)10 = =7 PO _ g0 A7 (3.297)

The Pauli matrices allow symmetric spinorial tensors to be related to equivalent irre-
ducible vectorial tensors. Thus we may define, for an even number of spinor indices, the
tensor

Ty = (£03,) "7 L (203,) " " Yoy o (3.298)

where it is easy to see that T, ;, is symmetric and also zero on contraction of any pair of
indices, as a consequence of (3.297). For an odd number of indices we may further define

Tail...in = (go_il)alﬁl v (Eo_in)anﬁn ¢aa1...an51“.5n 5 (3299)
where Ty, .4, is symmetric and traceless on the vectorial indices and satisfies the constraint
(01)a" Tgiy..in15 = 0. (3.300)

For two symmetric spinorial tensors ¢1 a,..a,»®2,8:...6m,» With j1 = %n, Jo = %m, their
product can be decomposed into symmetric rank (n + m — 2r)-tensors, for r = 0,...m if
n > m, where for each r,

5/8171 s 2’ZQ/BTFVT¢1,(011‘..oznfr ,81...Br¢2,an_r+1...an+m_2r)'yl...'yr , r=0,...,m. (3301)

For two spinors 714, 2o the resulting decomposition into irreducible representation spaces
is given by

Ma 28 = M(aM28) t €ap %771777% ) (3.302)
where 71(4725) may be re-expressed as a vector using (3.298). This result demonstrates

the decomposition of the product of two spin—% representations into j = 0,1, scalar, vector,
irreducible components which are respectively antisymmetric, symmetric under interchange.

For two symmetric spinorial tensors as above with n = m there is a SU(2) invariant

e2PL Py DBy B s (3.303)

which is clearly symmetric, antisymmetric under ¢; < ¢5 according to whether n is even,
odd. For four n = 4 symmetric spinorial tensors there is an independent antisymmetric
invariant

a a a1l 1 13
c1P1 caam ca1dr P22 P3d2 s 501 o anars ¢2,51ﬁ253 ¢37’71’Y2’Y3 ¢4,5152537 (3.304)

where the indices are contracted so as to correspond to the lines joining the vertices of a
tetrahedron. Interchanging any two vertices then generates a minus sign since ¢ for the line
joining the two vertices changes sign. The invariant in (3.304) corresponds to the t* term
appearing in (3.266).
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3.15 Spinor Representation for Angular Momentum

Finding explicit expressions for 35 and 65 symbols can be a rather involved combinatorial
exercise. This can be made more algebraic by using spinor operators to provide representa-
tions of the angular momentum operators To this end we introduce operators ¢ satisfying

the commutation relations®’ o
(6%, ¢°] =2e*"1. (3.305)

The operators ¢% are arbitrary up to ¢ > P M 3" for [Mg*] € Sp(2,C). As a consequence
of (3.305) o o
Je=30'6t,  J=-10%",  Jy=5(8'97+ 49, (3.306)

satisfy the standard commutation relations (3.61a), (3.61b) and

[J+,ex'A] xgie - [J_,ew'A] xlie QE

o0xy Oz
v 1 0 0 2 . .
T _ = _ z-¢ A= «
[ 3, €%¢] 2(331 Sy 2 am)e . 2d=xad (3.307)
Hence
R Z Z —:Uj+m Jmij, Njm ((]+m)'(] m)')% (3.308)
j= =0,11 jm

IRt

ensures that Oj,, are irreducible tensor operators satisfying (3.270). The operators O,
form a basis for the 2j + 1 symmetric tensor operators ¢(®1¢®2 ... $4*2). By using (3.305)
any arbitrary product QASO”(%QQ qgan can be reduced to a sum over symmetrised products
and hence O, for 2j <n.

For the product of two exponentials we have

TPy b _ (24y) P gy
J 1 . .
= Y Y — (@) (@2 +y2) " O Y, == (=1)7 (212)" (z291)" . (3.309)
O,é,l, m=—j Ttjm rs>0 T
Expanding ™% in terms of Oj,m, and e¥"? in terms of Ojym, as in (3.308) and comparing
coefficients gives

(-1)°
Ojymi Ojymy = Njymy : : : .
Jrma e me ]2m2T§0 r1s!(j1 + my — )1 (j1 = m1 — $)!(J2 + ma — $)!(j2 —ma —71)!

X nj1+j2—T—S mi1+msa Oj1+j2—1”—5 mi1+mo

= (_1)j1—j2—m3 Z F( Ji J2 J3 ) Ojy -mg, M3 =-mi—mg, (3.310)

.. ~ . mi mz m3
l71-J2|<d3<d1 +52

30 A particular representations for such operators is unimportant for the considerations in this section.
Necessarily such operators act on an infinite dimensional space. A particular choice, acting on functions

f(z), is provided by taking (;3 = 2z, q32 = —% or in terms of creation and annihilation operators 45

V3d, & = v3a. ’
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for

Ji g2 g3\ _ T M n; Z ()i s
my mg mg )~ IIMTTI2M2 N33 L sl(51-ma—s)!(j2+ma—s)!(j3—j2+m1+s)!(j3—j1—ma+s)!(j1+i2—j3—s)!
S

(3.311)

In (3.311) the range of the s sum is dictated by the factorials in the denominator. For
js3 = 0,41 = jo and mg = —my there is just one term when s = j; — my for a non zero
contribution giving
Jd 0\ _  1\j-m
F(7 7 0)= (-1, (3.312)
Another such case arises for jz = j1 + jo when we must take s = 0 so that
( Ju J2 Ji+j2 ) _ (_1)j1—jg+m1+m2 M1 +j2 mi+ma (3 313)

Ty T Tjimy Tjams

For js = % there remains one term and

J % j"% ; L J+m J % J- 2 ]+m
P i o )==Geme D307 F(005 08 ) ==(rm)s (-1 (3:314)

From (3.311) we may readily derive the symmetry properties by shifting s — j1 +j2—j3—s
and s > jo—jz—mi+s

F(h J2 ja):F( Jje J1 J3 ) (- 1)]1+]2+]3F<]2 J1 Js):F(jB Ji jz). (3.315)

m1 m2 m3 —m2 —mjip —ms3 m2 mi m3 m3 mip ma

Detailed results are based on

o , )
= X u Y ()0 m e O

j=0,11,... m=-j

exp ( -u Axy) T 9e=d o d

r=y=0

1 u'z-dA) 82 ,_1+u

=—e , ANpy =€apm—, u' =
(1-u)? i aﬂ@xaayg 1-u

. (3.316)

where the calculation of the action of the derivatives is described later. This reduces to

> o S (1) 0; 1 O Oy - o O (3.317)
j=0,3,1,...  m==j
As a special case, taking k = 0, this gives®!
J .
> (D)0 Ojm = (2 + 1)1, (3.318)

m=—j

31 Alternatively starting from (3.310)

2j-5" 1

i (1) O0j-m Ojm = ZJ'Ozj'o > Z(_ )P(p”)’@j—s—p)!

- /=0 =0 sH (25 -5 =-9)! o (" -p)*?

)

gives the same result.
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and therefore, as a consequence of (3.318), from (3.310) and using (3.315)

Z (_1)j1+j2+m1+m2 sz —-mo Oj1 -m1 Ojl mi sz ma = (2j1 + 1)(2j2 + 1) 1

mi,m2
I i g2 g i d2 g 4
_ 1 J2 J3 _1\iitiz=m3 )., .
B mg;nz j3’,j3§‘;1*j2‘ F ( m1 mg m3 ) F ( m1 ma m3 ) (-1) Oja’ ms Qs -ms - (3.319)
For consistency it is necessary that
Ji1 J2 J3 JioJz2 J3\ _ L o
Z _ F(m1 ma md) F<m1 ma ms) B f(_]l,jQ,]S) 2]3—+1 (5]3,J3 ’ (3320)
mi1,m2,mit+ma=-—ms
so that o -
Z F( Jir J2 J3 ) F( Jr J2 J3 ) — f(jl,]Q,]S), (3321)

im0 mi mo ms mi mo ms
where the symmetry conditions (3.315) requires f(j1,j2,J3) to be totally symmetric.

To obtain an explicit form for f(ji,j2,j3) we may use a generalisation of (3.316)

exp ( -rA,—5 Awwr) ¥ 0 ? @ W ? o P

z=w=z'=w'=0

i 9 Ji+j2
- Z 7201 272 Z
J1,j2=0,% ... 73,38’ =|31-J2|

X e () F G ) Qo @ Oy (3:322)
mi,ma2

Hence, using (3.319) and (3.318), and also with «" as in (3.316) and similarly for v" in terms
of v,

Z'l‘A xQ'A x8'A
exp(—rszm—sA“%—uAmlu—vAIExS)e Pet2¢  oT8®

z;=0
1 s : ias e
= (1 _ U)2(1 _ U)2 Z T23182j2 (U,’U,)2]3 (_1)]1+]2 3 f(]17,72a]3) 1
J1,J2,78=0,% ...
1 1
= 1. 3.323
(1-u)2(1-v)2 (1+rs—ruv —su'v')? ( )
Since ¥4 p >0 (~1)(a+b+c+1)!/(albc!) 2%b2¢ = (1 -z —y + 2) "2 we then have
o (j1+j2 + g3+ 1)!
fUnJ2.g8) =7 — 3.324
( ) (J1 +J2 = J3) (G2 + s = j1)! (s + ji = j2)! (3824
From the generating function for f(j1,j2,j3) given by (3.323) this satisfies
0i o Jitj2 R 1
Z 7231 272 Z (_1)11+J2*J3 (i1, j2,73) = > 5
1,420, % ... J3=[j1-Jz| (1-r)*(1-s)
= Y (21 +1)(252 + 1) rH1 s (3.325)

.. A1
J1,52=0,5 ...
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as is necessary for (3.319) using (3.321).

Manifestly (3.310) is just the usual Clebsch-Gordan angular momentum decomposition
as in (3.157) so that the 35 symbol ( 7;11 7‘;22 71133) is determined up to a normalisation factor
independent of mj, ma, m3. The normalisation is determined by (3.320) so that

(225 ) = A ed) F (22 5 ), AGdangs) = f(Gudanjs) 2. (3.326)

m1 Mg m3 m1 m2 ms
These techniques can be extended to derive results for 65 symbols. Following a similar
route as before

a:l'A 1‘2'A ZIQ'A
exp (—u1 Ag =3 Dgorg =12 Doz =02 Dpgre—V1 Darayo—03 Daoa, ) T 0T 0 | oT12d

x;=0
3 k;
= exp(—?u A$1$4_u3 Aﬂ?sﬂfs_ (%) A$9$12) H Z UiQki Z (_1)ki+ni
i=1 ki=0,%,... n;=—k;
X 6331-(;5 Oks—n3 Okg—nz €$4‘¢ 6z5'¢ Ok2n2 O/f1—n1 6$8'¢ ewg'd)Oklnl Ok3n3 64312'@S .
3 1 L
= 1251, 245 T3 (25i+2k;) J1 2 Js
—H— Z ui ot (=1)%=t F{ }1
1 () 0 5 ks
3 1
=11 2 (3.327)
i=1 (1-u;)? )
X ' 1

(1 —ud ugd v1 — ut’ ud vy — ui’ ud v3 — vy vy V3 + uy ud V1 Vo + ui ugd v vz +ud ug vo 03)

using that ji + ko + k3, jo + k1 + k3 are integers to achieve a symmetric form for the sign
factor and where we have required, similarly to (3.190),

Z (_1)Zi(ji+mi+ki+nz‘)F(k2 ks 71 )F(kg k1 jo )F(kl ke 73 )F(j2 J3 jl’)

n2 —ng —mi ng —ni —ms ni -ng -ms ma ms mi
n;, m1 fixed
— Ji j2 73 1 o
=F { ki ko k3 } 2j1+1 Ojujv - (3.328)
Clearly from (3.326)

{21 Z Z } = A(ka, k3, j1) A(k3aklan)A(klak%jB)A(jlan,jB)F{;11 22; Z} ;o (3.329)

and the symmetry properties in (3.189) follow directly from the generating function given
by (3.328). By using

1 _ (ZzaZ+ZJb]+1)'
(1-Shyzi+ T2 y)" abpo Mimai! T byt

4 3
(-1)%% [T [Ty (3.330)
i=1 j=1

to expand (3.323) with z1 = u'ug v1, x2 = wugd ve, x3 = w'udvs, x4 = vivovs, Y1 =
ug ug vovs, yo = uy us vi vz, Y3 = ui ug vive and matching with [T2; u/%1v;i requires
taking

ar=5-j1—ka—k3, ao=5-jo—ks—ki az=s5-jo—ki1—ko, as=5-j1-J2-J3,
b1=j2+j3+k‘2+/€3—5, b2=j3+j1+k3+k:1—5, b3=j1+j2+/{:1+k22—8. (3331)
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with s an integer constrained to a finite range by requiring each a;, b; is a positive integer
or zero and }; a; + 3 ;b; = s. Hence

Ji J2 g3\ _ 1S
F{lﬂkzk’:ﬂ}_zs:( 1)
with a;,b; as in (3.331) and where the sign (-1)Zi% = (-1)Zi(2i*2ki)*s  Ag a special

case for k1 = 0 there is only one term in the sum with a non zero contribution requiring
ko = js, k3 = j2 and

(s+1)!
al! ag!ag!a4!b1! bg! bg! ’

(3.332)

FI 2BV D) Zidif (g, gasds) = {727 L= ( . 3.333
{Ojsjz} ( ) ( 1, J2 3) {OJS J2} \/(2j2+1)(2j3+1) ( )

The generating functions obtained here were first determined by Schwinger.*?

3.15.1 Calculation of Action of Derivatives

The calculations to obtain the results in (3.316), (3.322), (3.323) or (3.328) is complicated
by the non commutavity of ¢*. We consider in general

exp (- N PR R : 3.334
» ( i;l e xzxj) ¢ ‘ c x;=0,1el ( )
for I c {1,2,...,n} with p = dimI even. For w;;, uy;» to be both non zero we require
i1, j#j. With our conventions e, = -1 and from (3.316),
Ui,j 7 <j
Z ui,j Axixj = Z 8%‘2 Uij 8%1 5 Uij = —um i>j . (3335)
i<gel bl 0 otherwise

U = [U;j] is then an antisymmetric p x p matrix with one non zero element in each row and
column.

For p =n (3.334) defines an invariant. To evaluate (3.334) we define a normal ordering
whereby all operators ¢! are moved to the left of ¢>. Thus

R N(e’”'¢) e~ N(ew'd)) = 19! 29’ , (3.336)
and in general
) ) ) ) 0 i<y
em1'¢...em"'¢:N(emlﬂl’...em"'d)) exp(—ZxZ-,lVijxj,g), Vij=11 i=j,
“J 2 i>j
N(ewl"i) e ex""i)) = exp (Zi $¢,1g51) exp (Zi T2 QZ;Z) : (3.337)

32 Juliian Seymour Schwinger, 1918-1994, American. Nobel prize 1965.
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Defining coherent states such that (¢!|¢! = ¢*(¢'], $2|¢?) = ¢?|$?) then
(6" IN(£(2".6))I6%) = £(4",6%) (¢']6%). (3.338)
With these results the calculation of (3.334) can be reduced to considering

exp(— > ui Axﬂ;j)(¢1]ex1'¢3...ex"'¢;]¢2)

’i<jEI :ISZ':O,iEI
- 1 2 v 1) .2
= eXP(— > Oain Ui 3xj,1) eXP(Z($i,1¢ + " wi2) = Y, wiaVi :Ej,z) _A{o7]e7),
ijel i=1 ij=1 z;=01el
(3.339)
where, with Tul ={1,2,...,n},

n
> wiaVij T2
i,j=1
= Z l’iylv(p)ij Zj2 + Z $Z'71V(n_p)ij Zj,2 +2 Z (-’Ei,l Z Zj2 + Z Tj1 371'72), (3340)

i,5el i,jel el jel,j>i jel,j<i

with V() the pxp lower triangle matrix with 1’s on the diagonal and 2's below the diagonal.

The evaluation of (3.339) follows from
:exp(—f)g-V-ﬁy) exp(—y-U-g])

=6Xp(—3g'V-(9y)det(U_l)fdzd2 exp(z-U_1-§+z-g+y.§)

exp(—(%-U-ax) exp(m-g]+y-5:—x-v-95)

r=x=0

:det(U_l)[dde exp(z-(U_l—V)'2+z-g+y.5)
B 1
S det(1-V-U)

for &, § column vectors, x, y row vectors and U, V non singular square matrices.

exp(-y-(1-V-U)"-U-3), (3.341)

For application to (3.316)

1
x:(:zlyl), i:(gz), y:(¢2_221¢2), §:(¢1?222), U:(—Ou g), V=(; (1))a
(3.342)
so that

exp(—a,i-U-ax) exp(:c-gj+y-:i—x-V-5:)‘ ) Oxexp(zl¢1+¢222—z122)

= (1_;”)2 €xp (7/(2’1(251 + ¢222) - U'22’12’2) ) u' = % . (3.343)

which corresponds to the result in (3.316) after normal ordering. For (3.328) the matrix U
becomes

0 0 0w 0 0 O O 0O O0O0O
0 0 0 0 0 0 0 0 0 0w O
0 0 0 0 0 vo2 0O 0O O O0O0O
-u1 0 0 0 0 0 0O O O OO0 O
0 0 0 0 0 0 0 wg 0O 0 O0 O
_ 0 0 -»2o0 0O 0 O O O OOO
U= 0 0 0 0 0O 0 0O 0 0 vt 00 ’ (3'344)
0 0 0 O0-u30 0O O O OO0 O
0 0 0 0 0 0 0 0 0 0 0 wug
0 0 0 0 0O 0-v1 0 O OO0OO
0 -3 0O 0 0OOO O 0O O0O0PO
0 0 0 0 0 0 0 0 -u20 00
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where 1/det(112 -V -U) gives the final result for the generating function.

3.16 Isospin

The symmetry which played a significant role in the early days of nuclear and particle
physics is isospin, was initially based on the symmetry between neutrons and protons as far
as nuclear forces were concerned. The symmetry group is again SU(2) with of course the
sam]1 mathematical properties as discussed in its applications to rotations, but with a very
different physical interpretation. Results for Clebsch-Gordan coefficients are crucial in the
applications of isospin symmetry. In order to distinguish this SU(2) group from various
others which arise in physics it is convenient to denote it as SU(2);.

From a modern perspective this symmetry arises since the basic QCD lagrangian de-
pends on the Dirac v and d quark fields only in terms of

q= (;) . q=(a d), (3.345)

in such a way that it is invariant under ¢ - Aq, ¢ - GA™ for A € SU(2). This symmetry
is violated by quark mass terms since m, # my, although they are both tiny in relation to
other mass scales, and also by electromagnetic interactions since u,d have different electric
charges.

Neglecting such small effects there exist conserved charges I, I3 which obey the SU(2)
commutation relations

[I5,1.] = <L, [L,,1.]=2I; or [lsIy]=icael, (3.346)
as in (3.61a),(3.61b) or (3.54), and also commute with the Hamiltonian
[l H]=0. (3.347)

The particle states must then form multiplets, with essentially the same mass, which trans-
form according to some SU(2); representations. Each particle is represented by an isospin
state |I I3) which form the basis states for a representation of dimension 27 + 1.

The simplest example is the proton and neutron which have I = % and I3 = %,—%
respectively. Neglecting other momentum and spin variables, the proton, neutron states

are a doublet (|p),|n)) and we must have

Lip) = 3lp), Isln) =3I}, Llp)=In), Lin)=p). (3.348)

Other examples of I = § doublets are the kaons (|K*),|K")) and (|K°),|K~)). The pions
form a I =1 triplet (|7*),[7°),|7~)) so that

L(jn*), 170, 177)) = (I7%),0,~77)), L%y = V2%, Lix%)=v2r7).  (3.349)

Another such triplet are the ¥ baryons (|£*),[£%),|%7)). Finally we note that the spin-3
baryons form a I = 3 multiplet (JA**),|A*),|A®),|A7)). Low lying nuclei also belong to
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isospin multiplets, sometimes with quite high values of I. For each multiplet the electric
charge for any particle is given by @ = Qg + I3, where )y has the same value for all particles
in the multiplet.

Isospin symmetry has implications beyond that of just classification of particle states
since the interactions between particles is also invariant. The fact that the isospin generators
I, are conserved, (3.347), constrains dynamical processes such as scattering. Consider
a scattering process in which two particles, represented by isospin states |I; m1), I3 ma),
scatter to produce two potentially different particles, with isospin states |I3 ms),|l4 m4). The
scattering amplitude is (Ismg, [ymy4|T |11y, Ioms) and to the extent that the dynamics are
invariant under SU(2); isospin transformations this amplitude must transform covariantly,
ie.

> DU (R DSD (RY*DSY (RYDSZ (R) (Ism's, Lym/y|TLym’y, Iym'y)
m'3,mly,mn,m's

= (I3m3,I4m4]T]11m1,Igm2) . (3350)

This condition is solved by decomposing the initial and final states into states |IM) with
definite total isospin using Clebsch-Gordan coefficients,

|[yma, Ioma) = Y [IM) (Iymy, Ioms [IM),

.M
<1377’L3,I4m4| = Z(I3m3,14m4|IM>(IM|, (3351)
M
since then, as in (3.276),
(I'M'|T|IM) = A1 dprdmrm (3.352)

as a consequence of 7' being an isospin singlet operator. Hence we have

(Ismg, Lyma|T|Iymy, Iama) = > A (Ismg, Lyma|IM )(Iymy, Iamg [IM). (3.353)
T

The values of I which appear in this sum are restricted to those which can be formed by
states with isospin I, I3 and also I3, ;. The observed scattering cross sections depend only
on ‘<13m3, I4m4|T|Ilm1, I2m2>’2.

As an illustration we consider wIN scattering for N = p,n. In this case we can write

(]I

mp) =13

),
) =\/3-H VA, ) - f | —% f |%—% (3.354)

using the Clebsch-Gordan coefficients which have been calculated in (3.166) for j = 1. Hence
we have the results for the scattering amplitudes

@iy

(m*p|T|x"p) = Az
(nplTm p) =3 A

(xOn|T|mp) = L2(As - A1), (3.355)



so that three observable processes are reduced to two complex amplitudes Az, A1. For the
2 2
observable cross sections

2 2
)

2 1 2
Oniporip = k|As[" Onporp = ghlAs +241[7, 0y n0, = §h[Az - Au[, (3.356)
for k some isospin independent constant. There is no immediate algebraic relation between
the cross sections since A are complex. However at the correct energy Az is large due to

2

the I = % A resonance, then the cross sections are in the ratios 1 : % : %.

An example with more precise predictions arises with NN — 7d scattering, where d is
the deuteron, a pn bound state with I = 0. Hence the 7d state has only I = 1. Decomposing
NN states into states [IM) with I = 1,0 we have |pp) = |11), |pn) = %(HO) +100)). Using

this we obtain ¢, _,04/0pprta = %

The examples of isospin symmetry described here involve essentially low energy pro-
cesses. Although it now appears rather fortuitous, depending on the lightness of the u,d
quarks in comparison with the others, it was clearly the first step in the quest for higher
symmetry groups in particle physics.

3.16.1 G-parity

G-parity is a discrete quantum number obtained by combining isospin with charge conjuga-
tion. Charge conjugation is a discrete Zy symmetry where the unitary charge conjugation
operator C acts on a particle state to give the associated anti-particle state with opposite
charge. If these are different any associated phase factor is unphysical, since it may be
absorbed into a redefinition of the states. In consequence the charge conjugation parity
is well defined only for particle states with all conserved charges zero. For pions we have

without any arbitrariness just
C|°) = |x9). (3.357)

The associated charged pion states are obtained, with standard isospin conventions, by
I.|7%) = /2|z*). Since charge conjugation reverses the sign of all charges we must take
CIsC~' = -I3 and we require also CI.Cl'=-I; (more generally if CI.Cl=—¢*]_ CI.C' =
—e”™[, the dependence on « can be absorbed in a redefinition of I,). By calculating
CI.|7°) we then determine unambiguously

Clm*) = —|x7). (3.358)
G-parity is defined by combining C' with an isospin rotation,
G =Ce ™2 (3.359)

The action of e™™2 on an isospin multiplet is determined for any representation by (3.101).
In this case we have
et = 1), e = <), e ) = 7). (3.360)
and hence on any pion state
Glrr) = —|r). (3.361)
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Conservation of G-parity ensures that in any 7m scattering process only even numbers of
pions are produced. The notion of G-parity can be extended to other particles such as the
spin one meson w, with I = 0, and p*, p°, with I = 1. The neutral states have negative
parity under charge conjugation so the G-parity of w and the p’s is respectively 1 and —1.
This constrains various possible decay processes.
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4 Relativistic Symmetries, Lorentz and Poincaré Groups

Symmetry under rotations plays a crucial role in atomic physics, isospin is part of nuclear
physics but it is in high energy particle physics that relativistic Lorentz®? transformations,
forming the Lorentz group, have a vital importance. Extending Lorentz transformations
by translations, in space and time, generates the Poincaré** group. Particle states can be
considered to be defined as belonging to irreducible representations of the Poincaré Group.

4.1 Lorentz Group

For space-time coordinates z# = (2°,2%) € R* then the Lorentz group is defined to be the
group of transformations x* — 2’ leaving the relativistic interval

2? = gata, goo =1, goi = gio =0, gij = —0ij , (4.1)

invariant. Assuming linearity a Lorentz transformation z# — z'#

o't = A2 (4.2)
ensures
z'? =22, (4.3)
which requires, for arbitrary x
9o\ WAy = g (4.4)
Alternatively in matrix language
T u 1 0
A gA = g’ A = [A I/] N g = [g/“/] = 0 _]13 . (45)

Matrices satisfying (4.5) belong to the group O(1,3) ~ O(3,1).

In general we define contravariant and covariant vectors, V# and U, under Lorentz
transformations by

VES V= NLVY . Uy > U = U, (A, (4.6)
It is easy to see, using (4.4) or (4.5), V'Tg=VTATg=VTgA !, that we may use g,, to lower

indices, so that g, V" is a covariant vector. Defining the inverse g"”, so that " g = 0*,
we may also raise indices, g"”U, is a contravariant vector.

4.1.1 Proof of Linearity

We here demonstrate that the only transformations which satisfy (4.3) are linear. We
rewrite (4.3) in the form
guda'*dz"" = g, datda”, (4.7)

33Hendrik Antoon Lorentz, 1853-1928, Dutch. Nobel prize 1902.
34 Jules Henri Poincaré, 1853-1912, French.
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and consider infinitesimal transformations
o't =t + (), da'* = dz* + 9, f*(z) da” . (4.8)
Substituting (4.8) into (4.7) and requiring this to hold for any infinitesimal dz* gives
GuoOu 7 + 90,0, f7 =0, (4.9)
or, with f, = g,»f?, we have the Killing equation,
Oufv+0ufu=0. (4.10)
Then we write
Ouw(Oufu +0ufu) + 0u(0y fur + Ous 1) = O (O fru + Opfu) = 20,0, f, = 0. (4.11)
The solution, defining a Killing vector, is obviously linear in x,
fu(z) =ay +wya”, (4.12)
and then substituting back in (4.10) gives
Wyw + Wy = 0. (4.13)
For a, =0, (4.12) corresponds to an infinitesimal version of (4.2) with

AP, =08, + Wt why, = g"wey . (4.14)

4.1.2 Structure of Lorentz Group

Taking the determinant of (4.5) gives
(detA)*>=1 = detA==+1. (4.15)
By considering the 00’th component we also get
(A%)?=1+%,(A%)?>1 = A%>1 or A% <-1. (4.16)

The Lorentz group has four components according to the signs of det A and A% since no
continuous change in A can induce a change in these signs. For the component connected
to the identity we have det A = 1 and also A% > 1. This connected subgroup is denoted
SO(3,1)".

Rotations form a subgroup of the Lorentz group, which is obtained by imposing ATA = 1
as well as (4.5). In this case the Lorentz transform matrix has the form,

(1 0 To
AR_(O R), RTR =15, (4.17)

where R € O(3), det R = 1, represents a three dimensional rotation or reflection, obviously
ArARr = Agp forming a reducible representation of this subgroup.
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Another special case is when
A=AT. (4.18)

To solve the constraint (4.5) we first write

_ ( cosha sinhan

T
T _ T, _
“Nsinhan B )7 B =B,n"n=1, (4.19)

where n is a 3-dimensional column vector, and then

1 sinh a(coshan® - nTB)
ATgA = : 4.2
g (sinh a(coshan — Bn) sinh? ann’ - B? (4.20)
Hence (4.5) requires
Bn =coshan, B* —sinh? ann’ = 13. (4.21)
The solution is just
B =13+ (cosha - 1)nn’ . (4.22)

The final expression for a general symmetric Lorentz transformation defining a boost is then

cosha sinhan®
B =1 . , 4.23
(a,m) (smhan 13+ (cosha - 1)nnT) (4.23)
where the parameter « has an infinite range. Acting on z*, using vector notation,
2’ = coshaz’ + sinhan - x,
x' =x+ (cosha—1)nn-x+sinhanz’. (4.24)

This represents a Lorentz boost with velocity v = tanh a n.

Boosts do not form a subgroup since they are not closed under group composition, in
general the product of two symmetric matrices is not symmetric, although there is a one
parameter subgroup for n fixed and « varying which is isomorphic to SO(1, 1) with matrices
as in (1.123). With Ag as in (4.17) then for B as in (4.23)

ArB(a,n)Ar " = B(a,n®), (4.25)

gives the rotated Lorentz boost. Any Lorentz transformation can be written as at of a boost
followed by a rotation. To show this we note that ATA is symmetric and positive so we
may define B = VATA = BT, corresponding to a boost. Then AB™! defines a rotation since
(ABY)TAB™ = B'ATAB ' =1 and so AB™! = AR, or A = AgB, with Ag of the form in
(4.17).

4.2 Infinitesimal Lorentz Transformations and Commutation Relations

General infinitesimal Lorentz transformations have already been found in (4.14) with w*,
satisfying the conditions in (4.13). For two infinitesimal Lorentz transformations

Al'ul/ = 6”1/ + wl'uu 5 AZMV = 5#1/ + Wﬁuu , (426)
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then
Ay = (A AT A ALKy = 67, + [wa,wi Py, (4.27)

where it is clear that A*, = §#, if either wi*, or w4, are zero.

For a relativistic quantum theory there must be unitary operators U[A] acting on the
associated vector space for each Lorentz transformation A which define a representation,

U[A2]UTAL] = UA2A]. (4.28)
For an infinitesimal Lorentz transformation as in (4.13) we require
UA]=1-1 w‘“’MM,,, M, =-My, . (4.29)

M,,,, are the Lorentz group generators. Since we also have U[A™] = 1 + i Jw M, (4.27)
requires

U[A] =1 - [wa, w1 " M,
= U[Ag‘l]U[Afl]U[Ag]U[Al]
= 1-[§wd” My, 5 017" Mo,] (4.30)

or
[ wd” My, 3w Mgy =i [wa, w1 ] My, [wa,w1]" = gop(wd 7w — wi“ws”) . (4.31)
Since this is valid for any wi,w; we must have the commutation relations
(M, Mop] = i(gw Myp = Guo Myp = Gup My + gup MW) ) (4.32)

where the four terms on the right side are essentially dictated by antisymmetry under p <> v,
o < p. For a unitary representation we must have

M,,' =M, . (4.33)

Just as in (3.229) we may define contravariant and covariant vector operators by requir-
ing

UAIVFU[A] = (A9, VY, U[AJULU[A]T = U A7, (4.34)

For an infinitesimal transformation, with A as in (4.14) and U[A] as in (4.29), this gives
[MMV7V(7] _ _i((sUMVV_(SUVVM)7 [M[,LVJUO'] = _i(gMUUV_gVUUN)‘ (435)
To understand further the commutation relations (4.32) we decompose it into a purely

spatial part and a part which mixes time and space (like magnetic and electric fields for the
field strength F),,. For spatial indices (4.32) becomes

[Mij, Myy] = =i(6j% My — 63 My — 65y Myg, + 63y M) . (4.36)

Defining
Im = %5mijMiJ = Mij = cijmIm, (4.37)
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and similarly J, = %enklel we get
[Jm, Jn] =—1 EmijEnkl Mil = %’iémnjEilj Mil = iEmanj . (4.38)

The commutation relations are identical with those obtained in (3.54) which is unsurpris-
ing since purely spatial Lorentz transformations reduce to the subgroup of rotations. As
previously, J = (J1, J2, J3) are identified with the angular momentum operators.

Besides the spatial commutators we consider also

[Mij, Mok] = =i(8k Moi = 0ik Moy ) , (4.39)
and
[ Mo, Moj] = —i M;; . (4.40)
Defining now
K; = My;, Ki'=K;, (4.41)

and, using (4.37), (4.39) and (4.40) become

[Ji, K] = i€ Ky, (4.42)
and

[Ki,Kj] = —iéiijk. (4.43)

The commutator (4.43) shows that K = (K7, K9, K3) is a vector operator, as in (3.231).
The - sign in the commutator is (4.43) reflects the non compact structure of the Lorentz
group SO(3,1), if the group were SO(4) then g,, — 0,,, and there would be a +.

For ozt = wh,x” letting w;j = €30 and W% = w'y = v; then we have, for ¢ = 20 and

x = (2,22, 2%),
t=v-x, 0x=0xx+Vt, (4.44)
representing an infinitesimal rotation and Lorentz boost. Using (4.29) with (4.37) and (4.41)

gives correspondingly
UA]=1-i60-J+iv-K, (4.45)

which shows that K is associated with boosts in the same way as J is with rotations, as
demonstrated by (3.50).

The commutation relations (4.38), (4.42) and (4.43) can be rewritten more simply by
defining
JE= Y hxiK;), =07, (4.46)

when they become
[Jf, Jj+] = ieiijkJr , [Ji_, Jj_] = iEiijk_ , [J;r, Jj_] =0. (4.47)

The commutation relations are then two commuting copies of the standard angular momen-
tum commutation relations although the operators J* are not hermitian.
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4.3 Lorentz Group and Spinors

For SO(3,1) there are corresponding spinorial representations just as for SO(3). For SO(3)
a crucial role was played by the three Pauli matrices o. Here we define a four dimensional
extension by

ou=g,0)=0,",  5,=(la,-0)=35,". (4.48)

Both ¢, and &, form a complete set of hermitian 2 x 2 matrices. As a consequence of (3.20)
we have
OpOy+0,0, =201, Tpoy+0,0, =201, (4.49)

and also
tr(ouo,) = 29 - (4.50)

Hence for a 2 x 2 matrix A we may write A = %tr(&“A) Op-

4.3.1 Isomorphism SO(3,1) ~ Si(2,C)/Zs

The relation of SO(3,1) to the group of 2 x 2 complex matrices with determinant one is an
extension of the isomorphism SO(3) ~ SU(2)/Zz. To demonstrate this we first describe the
one to one correspondence between real 4-vectors x,, and hermitian 2 x 2 matrices x where

> x =gt =x", a' = Ltr(oMx). (4.51)

With the standard conventions in (3.19)

(s ). (4.5
Hence
detx = % = g, atz” . (4.53)
Defining
X=a,z", (4.54)
then (4.49) are equivalent to
xx =21, xx = 2°1. (4.55)
For any A € SI(2,C) we may then define a linear transformation x* — x'** by
X x' = AxAT =x'T. (4.56)
where, using det A = det AT = 1,
detz' =detz = a'%=2%. (4.57)
Hence this must be a real Lorentz transformation
't = AP Y (4.58)
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From (4.56) this requires

oy = A, AT, AF, = Dtr(67 Ao, AT). (4.59)

To establish the converse we may use o, AT5” = 2tr(A") I to give
My =lte(AP, ouA,e” =2tr(AT) A, (4.60)

and hence, for trA = e*®[trA|,
i 00"
e —_—

2/AR,
where the phase e’ may be determined up to +1 by imposing det A = 1. Hence for any

A e Si(2,C), +A < A for any A € SO(3,1). All elements in SI(2,C) are continuously
connected to the identity so (4.51) does not allow for spatial or time reflections.

A= (4.61)

As special cases if AT= A1, so that A € SU(2), it is easy to see that z'® = 20 in (4.56)
and this is just a rotation of x as given by (3.27) and (3.30). If AT = A then A, given by
(4.59), is symmetric so this is a boost. Taking

Ap(a,n)=coshia 1l +sinhian-o, -co<a<oo, (4.62)
corresponds to the Lorentz boost in (4.23). Rotations remain in the form in (3.38).

For a general infinitesimal Lorentz transformation as in (4.14) then, using A*, = 4 to
this order and o,6" =41, (4.61) gives

A=1+31w"0,0,, (4.63)
setting a = 0, since tr(w"”0,G,) = 0 as a consequence of w"” = —w"". From (4.63)
At=1-1w"5,0,. (4.64)
Alternatively, with these expressions for A4, Af,
AO'pAT =0, + iw‘”’(auﬁyap - Upﬁuay) =0, + %w‘”’(gyp Tu = Gpu U,,) , (4.65)
using, from (4.49),
Ou0u0p = GupOp — Op0p0y Op0uOy = 2Gpu 0y — 0400y (4.66)
and therefore (4.65) verifies Ao, A" = 5, A", with A*, given by (4.14).

In general (4.63),(4.64) may be written as

N[ =

A=1-4 %w“”sw,, At =1+ %w“"EW, Suv = 510[,0] 5 S = %z T[u00] » (4.67)

where s,,,5,, = SW,T are matrices each obeying the same commutation rules as M, in
(4.32). To verify this it is sufficient to check

Suv0p = 0p 8 = (Gup Ou = Gup0v) s Suw0p—=0p S = U(Gup Opu = Gup Ov) - (4.68)
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4.3.2 Spinors, Dotted and Undotted Indices

In a similar fashion to the discussion in section 3.14 spinors are defined to transform under
the action of the SI(2,C) matrix A. Fundamental spinors 1), x are required to transform as

Yo A5, x4 e B=1,2. (4.69)

We may also, as hitherto, raise and lower spinor indices with the e-symbols e®?, €a8, Where

€12 = g91 = 1, so that the representations defined by v, ¥® in (4.69) are equivalent

P =ePPs, Xa=capX’, (4.70)

as, since det A = 13,

(A1) =eA 0 ¢55. (4.71)

The crucial difference between spinors for the Lorentz group SO(3,1) and those for
SO(3) is that conjugation now defines an inequivalent representation. Hence there are two
inequivalent two-component fundamental spinors. It is convenient to adopt the notational
convention that the conjugate spinors obtained from 1, x® have dotted indices, & = 1, 2.
In general complex conjugation interchanges dotted and undotted spinor indices. For v, x
conjugation then defines the conjugate representation spinors

da=Wa)  XT=(X), (4.72)
which have the transformation rules, following from (4.69),
Ga = 0s(A 4, x> A% (4.73)
for
(A% =(Ag*)" or A'=Al (4.74)

Both A, A € SI(2,C) and obey the same group multiplication rules, since A;As = A A,.
The corresponding e-symbols, 4, €ap, allow dotted indices to raised and lowered,

Y =g, Xa=cap X’ (4.75)
in accord with the conjugation of (4.70).

In terms of these conventions the hermitian 2 x 2 matrices defined in (4.48) are written
in terms of spinor index components as

(U,u)ao'm (&“)da , (4.76)

where , . .
(0u)* =P (0)p5,  (0u)ad = capeas(@)™ . (4.77)

%5 Using (3.289), e*7 A, e55 = 057tr(A) — Ag® = (A™1)s*, since for any 2 x 2 matrix the characteristic
equation requires A% —tr(A) A +det A1 =0, so that if det A =1 then A™" =tr(A) I - A.
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With the definitions in (4.51) and (4.54) then (4.77) requires tr(x%) = 2det z = 222. Using
the definition of A we may rewrite (4.59) in the form

Ao, At =0,A,, AG, AN =G,AF,, (4.78)
showing the essential symmetry under A < A.

The independent fundamental spinors v, x and their conjugates v, ¥ can be combined
as a single 4-component Dirac®® spinor together with its conjugate in the form

U= (ﬁg) ;U= (x" va), (4.79)
where U = ¥t (? (1)) Correspondingly there are 4 x 4 Dirac matrices
0 O'M)
Yu=| - ) (4.80)
" (U“ 0

These satisfy, by virtue of (4.49), the Dirac algebra

VYo + VoV = 290 La (4.81)

For these Dirac matrices

. 01
Yoo =y since o= (1 0) : (4.82)
and from (4.77)
B
__ T B R -1_(€ag O

Cy,C™" ==, for C= ( 0 Ea/j’) , C= ( A (4.83)

4.3.3 Tensorial Representations

Both vector and spinor tensors are naturally defined in terms of the tensor products of
vectors satisfying (4.6) and correspondingly spinors satisfying (4.69) or (4.73). Thus for a
purely contragredient rank n tensor

THL-Hn e AFY, AR, TV (4.84)
For a general spinor with 25 lower undotted indices and 27 lower dotted indices
; Y R 7-11B2;
’ral--~a2j7dl---d2j 1_4’ Aalﬁl e Aa2j52] T/Bl--ﬂzjﬁl--ﬁzj (A )Bldl (A )527642]*' (4.85)

The invariant tensors are just those already met together with the 4-index e-symbol,

g, P eap, €aps (4.86)

36paul Adrian Maurice Dirac, 1902-84, English. Nobel prize, 1933.
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as well as all those derived from these by raising or lowering indices. Here €923 = 1 while
o123 = —1.

To obtain irreducible tensors it is sufficient to consider spinorial tensors as in (4.85)
which are totally symmetric in each set of indices

Tal.“agj,o’él...dqu = T(al...agj),(dl...de) ° (487)

The resulting irreducible spinorial representation of SO(3,1) is labelled (7,7). Under com-
plex conjugation (j,7) = (7,7). Extending the counting in the SO(3) case, it is easy to
see that the dimension of the space of such tensors is (25 +1)(27+ 1). The fundamental
spinors transform according to the (%, 0) and (0, %) representations while the Dirac spinor
corresponds to (%, 0) e (0, %) These representations are not unitary since there is no posi-
tive group invariant scalar product, for the simplest cases of a vector or a (%, 0) spinor the
scalar products g, V#V" or 56a¢a¢5 clearly have no definite sign.

The tensors products of irreducible tensors as in (4.87) may be decomposed just as for
SO(3) spinors giving
(u,01) ® (Jo, )= D (4,1 (4.88)

l71-d2l<5<d1+i2
17172157251 +72

Rank n vectorial tensors are related to spinorial tensors as in (4.85) for 25 = 27=n by

Tm...un = Tay..amdl.-.dn(&m )dlal s (@m)dnan . (4-89)

If T is irreducible, as in (4.87), corresponding to the (%n, %n) real representation, then

Ty, ...y 1s symmetric and traceless.

A corollary of eé"”?? being an invariant tensor is, from (4.78),
Ae“l’(’paﬂﬁyag&p/l_l =e"5,0,050,, AE#V(TP@'MO'V&UJPA_I =e"5,0,050,. (4.90)

By virtue of Schur’s lemma these products of o-matrices must be proportional to the iden-
tity. With (3.20) we get

2i e"0,6,0,0, = 00010203 =11, QL eG,0,6,0, = Goo10203 = —i 1, (4.91)

using (0'05'1025'3)2 = 0901020303020109 = —1, and similarly (600’15’203)2 = —1, by virtue
of (4.49). The two identities in (4.91) are related by conjugation. In terms of the Dirac
matrices defined in (4.80)

1 ghvop

: 1, O
3 YV VoVp = YONV2Y3 =65, V5 = ( 0 _12) : (4.92)
As a consequence of (4.91) we may further obtain®’

L opop, 5 _ _;slegvl 1 pvops o _ s zlegv]
500,60, =-ioa", 5Pe,0, =i 0" (4.93)

3TFor a somewhat convoluted demonstration note, that since the indices only take four values,
"l o1,G,05G,0,] = %E”””(Juc’nag&p@\ — 0u0L0cONOp + Ou0yONTo0p — OpOrAOLTo0p + ONTuOLTo0,) = 0.
Then using (4.49) move o or & to the right giving €""7?0,6,056,0x + 4€x"’?0,6,0, = 0. Hence, with
(4.91), iox = —és{’””a,,&aap. Similarly i5, = éauw"&yaaép. Using these results, i(oxGu — 0,05) =
—2ex""P(0u0o0,6, + 04Gv055,). The right hand side may be simplified using (4.49) again and leads to

just (4.93).
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Since tr(o(,0,1) = tr(67,0,]) =0, (EU[M@,])O‘ﬁ, (6[”01,]5)‘5‘5 are symmetric in o < 8, & < 3
respectively so that for (1,0) or (0,1) representations there are associated antisymmetric
tensors

fuw = 5(€00,7)*" Tag, Fuw = 50 u01) " Tag, (4.94)

which satisfy f,, = %iswapfap, f/“, = —%isuygpfap. Only f. + fuv is a real tensor.

4.4 Poincaré Group

The complete space-time symmetry group includes translations as well as Lorentz transfor-
mations. For a Lorentz transformation A and a translation a the combined transformation
denoted by (A, a) gives
ot - 2t =AY +a . (4.95)
(Asa)

These transformations form a group since
(Ag,a9)(A1,a1) = (AgAr, Agar +ag),  (A,a)™ = (A7, -A"a), (4.96)

with identity (I,0). The corresponding group is the Poincaré group, sometimes denoted as
ISO(3,1), if det A = 1. It contains the translation group Ty, formed by (I, a), as a normal
subgroup and also the Lorentz group, formed by (A,0). A general element may be written as
(A,a) = (I,a)(A,0) and the Poincaré Group can be identified with the semi-direct product
0(3,1) x T}.

If we define
(Aa) = (Az,a2) ' (A1,a1) ' (A2, a2) (A1, a1) (4.97)

then direct calculation gives
A= Az_lAl_lAQ A1 s a= AQ_IAl_l(Agal - A1a2 —a] + (IQ) . (498)
For infinitesimal transformations as in (4.26) we then have

A, =61, + [wa,wr Fy a* = wd' a” —witLay . (4.99)

In a quantum theory there are associated unitary operators U[A,a] such that
U[AQ,CLQ]U[Al, al] = U[AQAl, A2a1 + CLQ] . (4100)

For an infinitesimal Lorentz transformation as in (4.14) and also for infinitesimal a we
require

UlA,a] =1-idw™ M, +ia"P,,  P,'=P,, (4.101)

defining the generators P, in addition to M, = -M,, discussed in section 4.2. To derive
the commutation relations we extend (4.30) to give

U[A,a] =1-1 [WQ,wl]‘LWMIW +1 (w2a1 —wlag)“PN
= UlAg,a2] 'U[A1, a1 U Az, a2]U[A1, a1]
=1~ 3w My — ad' By, 5 wi” My, — ar” Py ] (4.102)
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Hence, in addition to the [M, M] commutators which are given in (4.31) and (4.32), we
must have
[%wprgp, CLQHP#] =i (wia2)" Py, [afPﬂ, af’Pg] =0, (4.103)

or
(Myuv, Psl =i(9ve Py — guo Py) [P, Py]=0. (4.104)

This agrees with general form in (4.35) and shows that P, is a covariant 4-vector operator.
Since (A,0)(I,a)(A,0)! = (I, Aa) and using (Aa) P, = a*(PA), we have for finite Lorentz
transformations

U[A,0]1 P, U[A,0]7 = P,A",. (4.105)
If we decompose
PH:(Ha P)7 PM:(H7_P)7 (4106)
then using (4.37) and (4.41) the commutation relations become
[JlaH] =0, [JH‘PJ] :,LsZ]k‘Pk:? (4107)

and
[K;,H]=1iP;, (K, Pj]=1i6;; H. (4.108)

4.5 Irreducible Representations of the Poincaré Group

It is convenient to write
U[A,a] =T[a]U[A],  U[A,0]=U[A], Tla]=Ul[1,a], (4.109)

where T'[a] are unitary operators corresponding to the abelian translation group 7. In
general '
T[a] = & Fr . (4.110)
As a consequence of (4.100)
U[A]T[a] = T[Aa]U[A]. (4.111)

The irreducible representations of the the translation subgroup T} of the Poincaré Group
are one-dimensional and are defined in terms of vector |p) such that

Pup) =pulp),  Tlallp) = e""Pu|p), (4.112)

for any real 4-vector p, which labels the representation. As a consequence of (4.105)
PU[A]lp) = (pA™H),U[Allp) (4.113)

so that U[A] acting on the states {|p)} generates a vector space V such that |p’), |p) belong
to V if p’,, = (pA™'), for some Lorentz transformation A. All such p/,p satisfy p'? = p?
and conversely for any p’,p satisfying this there is a Lorentz transformation linking p’, p.
The physically relevant cases arise for p? > 0 and also we require, restricting A € SO(3,1)1,
po,Po 2 0.
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The construction of representations of the Poincaré group is essentially identical with
the method of induced representations described in 2.2 for G' = SO(3,1)" x Ty. A subgroup
H is identified by choosing a particular momentum p and then defining

Gp={A: Ap=p}, (4.114)

the stability group or little group for p, the subgroup of SO(3,1)" leaving p invariant as
discussed in 1.3. For a space V; formed by states {|p)} (additional labels are here suppressed)
where

Pup) = pulp),  Tla]lp) = ™ Pu|p), (4.115)

then Vs must form a representation space for G since U[A]|p) € V; for any A € G by virtue
of (4.114). Hence V; defines a representation for H = G ® Ty. The cosets G/H are then
labelled, for all p such that p? = p2, by any L(p) € SO(3,1)! where

pu=(PL(P) ™)y, or equivalently p* = L(p)*,p" (4.116)

and, following the method of induced representations, a representation space for a repre-
sentation of GG is then defined in terms of a basis

p) = U[L(P)]|p) € Vp,  forall [p)eVy. (4.117)

Finding a representation of the Poincaré group then requires just the determination of
U[A]|p) for arbitrary A. Clearly, by virtue of (4.113), U[A]|p) must be a linear combination
of all states {|p’)} where p'* = A#,p”. Since p'* = L(p")*,p" we have

(L") 'AL(p) B = P (4.118)

It follows that )
L(Ap)'AL(p) = A, € Gy, (4.119)

and hence ]
U[A]|p) = U[L(Ap)]U[Ap]1P) € Vap (4.120)

o

where U[A,]|p) is determined by the representation of G on V.

For physical interest there are two distinct cases to consider.

4.5.1 Massive Representations

Here we assume p? = m? > 0. It is simplest to choose for p the particular momentum
P =(m,0), (4.121)
and, since p has no spatial part, then

G; = SO(3), (4.122)
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since the condition Ap = p restricts A to the form given in (4.17). As in (4.116) L(p), for

any p such that p? = m?2, pg > 0, is then a Lorentz transformation such that p* = L(p)*,p".

With (4.17) defining Ag for any R € SO(3), then (4.119) requires
L(Ap)'AL(p) = Arpny.  R(p,A) € SO(3). (4.123)
R(p,A) is a Wigner rotation. (4.123) ensures that
ULL(A)UTALp) = UlArgoay ] ). (4.124)

For any R, U[ARr]|p) is an eigenvector of P* with eigenvalue p* and so is a linear combi-
nation of all states {|p)}. In this case V5 must form a representation space for SO(3). For
irreducible representations Vs then has a basis, as described in section 3.5, which here we

label by s =0, %, 1... and s3=-s,-s+1,...,s. Hence, assuming {|p, s s3)} forms such an
irreducible space,
UlAr]p,ss3) = Z 1p,555) D), (R) . (4.125)

with D) (R) standard SO(3) rotation matrices. Extending the definition (4.117) to define
a corresponding basis for any p

[, s s3) = ULL(p)]|p, 5 53) , (4.126)
then applying (4.125) in (4.124) gives
- 7y D)
U[A] |p7 S S3> - Z ‘Apa S 33) Ds’3 53 (R(pa A)) ) (4127)
s's

with R(Ap, A")R(p,A) = R(p,A'A).

The states {|p, s s3) : p?> = m?,po > 0} then provide a basis for an irreducible representa-
tion space Vp, s for SO(3, 1)". The representation extends to the full Poincaré group since
for translations, from (4.112),

Tla]lp, s s3) = € [p, 5 3) . (4.128)

The states |p, ss3) are obviously interpreted as single particle states for a particle with mass
m and spin s.

In terms of these states there is a group invariant scalar product

(p',s5|p, s s3) = (2m)32p° 3% (P = P) syt » (4.129)

which is positive so the representation is unitary. The invariance under Lorentz transfor-
mations follows from

d3p

d*p 6(p* + m*)O(°) = 50 where p° = (p*+ mg)% . (4.130)

The precise definition of the representation depends on the choice of L(p) satisfying
(4.116). This does not specify L(p) uniquely since if L(p) is one solution so is L(p)A for
any A € G3. One definite choice is to take

L(p) = B(a,,p) for p!=B(a,p)",p” =m(cosha,sinhap), (4.131)
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where B(a,p) is the boost Lorentz transformation defined in (4.23). Then in (4.126)

U[L(p)] - U[B(a,p)] = e"PK. (4.132)

Using (4.131) if we consider a rotation Ap then L(Arp) = B(a,p®) and, by virtue of
(4.25),
B(a,p™) "ArB(a, ) = Ag, (4.133)

so that

U[AR]|p, s 53) = ULL(ARp) | U[AR] |, s 53) = 2|ARp,553 )D& (R). (4.134)

The Wigner rotation given by (4.123) with this definition of L(p) is then just R(p,Ar) = R.

4.5.2 Helicity States

An alternative prescription for L(p) in (4.117), giving a different but equivalent basis for
Vm,s, is to first boost along the 3-direction and then rotate so that

es > p(0,¢) =cosbes +sinf(cospe; +singes), (4.135)

which is just the radial unit vector in spherical polar coordinates. This rotation corresponds
to Ry p,-¢, in terms of Euler angles, or equivalently R(©,n) with n = —sin¢e; + cospes.
Hence p = L(p)p, with p* = (p*,|p|P) can be obtained by taking

sin ¢sinfsinh o cos gpsinp(cosf-1) cosgp+sin®pcosd  sin psinhcosh o

cosha 0 0 sinh a
) )
cos 0 sinh —cos ¢sinf —sin¢sin 6 cos 6 cosh

L(p) - A B(a e ) _ (cosd)sin@sinha sin?¢g+cos?pcosf  cospsinp(cosf—1) cos¢psin b cosh o
=~ AR(O,n) 3) =
p" =m(cosha,sinhap(6,9)). (4.136)

Helicity states are then defined by
Ip,h) = U[R(©,1)]U[B(a,e3)]|p,h), U[R(O,m)] =e O™ = 70710026100 - (4.137)

suppressing the label s for the particle spin which is fixed. Since J3 commutes with
U[B(«,e3)] and ‘ ‘
e 1O L etond o5 3 (4.138)

we must have

so that h is the component of spin along the direction of motion, or helicity.

Wigner rotations are defined just as in (4.123). Helicity states transform very simply
under rotations since for any rotation R

RR(O,n)=R(O",n")R(x,e3) = Ry g - R(x,€3), n’' = -sing’ ey +cos¢’ ey, (4.140)
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and
ARL(p) = L(Arp),  (Arp)* = (¥°.IpID(0',¢")), (4.141)
so that ‘
U[AR]|p, ) = [Agp, hye "X (4.142)

For R = R(~,e3) then x =~ and ' =0, ¢' = ¢ +~. For R = R(n,e2) and taking ¢ = 0 then
x=¢'=0and 0" =6+n.

When Lorentz boosts are involved the Wigner rotation mixes different helicity states.
For a boost along the 3-direction

R(p, B(p, eg)) =Ry -4, cotx=cotf cosha+cothpcosech sinha, (4.143)

so that
U[B(B,e3)]lp, h) le YD) (Ry o) (4.144)

with p’ = B(B,e3)p given in terms of o/,0’, ¢ as in (4.136) with cosha’ = cosh 8 cosha +
sinh 3 sinh a cos#, cot @’ = cosh 3 cot 6 + sinh 3 coth « cosec 6.

4.5.3 Massless Representations

The construction of representations for the massless case can be carried out in a similar
fashion to that just considered. When p? = 0 then the method requires choosing a particular
momentum p satisfying this from which all other momenta with p? = 0 can be obtained by
a Lorentz transformation. There is no rest frame as in (4.121) and we now take

P =6(1,0,0,1), ©>0, (4.145)

with @ some arbitrary fixed choice. It is then necessary to identify the little group in this
case as defined by (4.114). To achieve this we consider infinitesimal Lorentz transformations
as in (4.14) when the necessary requirement reduces to

whyp” =0, wh = —w"H . (4.146)
This linear equation is easy to solve giving
w3=0, wlo = —wls, w?p = —w?s, w3y =0. (4.147)
These reduce the six independent w” = —w"* to three so that
LW My, = w'? Mg + W (Moy + May) +w® (Mo + M) . (4.148)
Identifying the operators
Js = Mia, E1 = My, + M3y = Ky + Js, Ey = Moo + M3s = Ko — Jy (4.149)
we find the commutators from (4.32), or from (3.54), (4.42) and (4.43),

[Js,E1]=iEy,  [Js,E2]=—iEy,  [Ey,E3]=0. (4.150)
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A unitary operator corresponding to finite group elements of Gy is then

6—i(a1E1+a2E2)6_iXJ3 , (4151)

Noting that

. . X —qj
BB oo s, (2) (S Y () s

then if (4.151) corresponds to a group element (x,a,a2), with x an angle with period 27,
we have the group multiplication rule

(X,) allv al2)(X7 ai, CL2) = (X, + X, a’1X, + alla GQX’ + QIQ) . (4153)

The group multiplication rule (4.153) is essentially identical to (4.96). The group is then
isomorphic with the group formed by rotations and translations on two dimensional space,
so that for the massless case we have the little group

Gy~ ISO(2) = SO(2) x Ty . (4.154)

This group is isomorphic to the group of rotations and translations in two dimensions.
The representations of this group can be obtained in a very similar fashion to that of the
Poincaré group. Define vectors |b1, bs) such that

(E1, Ba)[b1,b2) = (b1,b2)|b1, b2) (4.155)
and then we assume, consistency with the group multiplication (4.153),
e X3 |by ba) = €T X|bX bgX) | (4.156)

linking all (by,bs) with constant ¢ = b1? + bo?. This irreducible representation of 1S0(2),
labelled by ¢, h, is infinite dimensional. However there are one-dimensional representations,
corresponding to taking ¢ = 0, generated from a vector |h) such that

Erlh) = Eblh) =0, Js|h) = hlh), (4.157)
so that the essential group action is
e"XT3|p) = ethX|p) (4.158)

For applications to representations of the Poincaré group e X3 corresponds to a subgroup
of the SO(3) rotation group so it is necessary to require in (4.157) and (4.158)

h=0,+3,+1,.... (4.159)

For the associated Lorentz transformations then a general element corresponding to the
little group is A4, q,)Ay Where

1+%(a12+a22) a1 as —%(a12+a22) 1 0 0 0
_ a1 10 —a1 _ | Ocosx —sinx 0

A(al,a2) - ) a2 01 ) —a2 ) AX " | 0siny cosx O (4'160)
2(ai’+a?) a1 ag 1-3(ar*+as?) 0 0 0 1
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It is easy to see that A4, 4,0 = Ayp =p with p as in (4.145).

The construction of the representation space V}, when p? = 0 proceeds in a very similar
fashion as in the massive case. Neglecting infinite dimensional representations of the little
group, then starting from a vector [p, h) satisfying

P#|ﬁ’ h) :ﬁ#|]37h’>7 J3|f)7h> = h|ﬁ7 h>7 (4161)
a basis {|p, h) : p? = 0,pp > 0}, for V, is formed by

Ip,h) =U[L(p)]|p,h), for p"=L(p)".p", (4.162)

where L(p) is assumed to be determined uniquely by p. Using
L(Ap)_lAL(p) = A(al,az)AX € Gﬁ? for al,?(va) ) X(pa A) ) (4163)

so that ‘
UM (ar.a0) UL 1B, B) = [, B) X, (4.164)

then, for any A € SO(3,1), the action of the corresponding unitary operator on Vj, is given
by
U[A][p, h) = |Ap, h) e "X ). (4.165)

Group multiplication requires x(p, A) + x(Ap,A") = x(p, A'A).

For p as in (4.145), and
"' =w(l,p), w>0, (4.166)

then L(p), satisfying (4.116), is determined by assuming it is given by the expression (4.136)
with now e® = w/w. By the same arguments as for massive helicity states

so that the component of the angular momentum along the direction of motion, or helicity,
is again h.

The irreducible representations of the Poincaré group for massless particles require only
a single helicity h, with values as in (4.159). If the symmetry group is extended to include
parity, corresponding to spatial reflections, then it is necessary for there to be particle states
with both helicities +h. When parity is a symmetry there is an additional unitary operator
‘P with the action on the Poincaré group generators

PIP1=J, PKP'=--K, PHP'=H, PPP'=--P. (4.168)

In consequence PP-JP~! = ~P-J so that, from (4.167), P|p, h) must have helicity —h, so we
must have P|p, h) = n|p,—h), for some phase 7, usually n = +1. Thus photons have helicity
+1 and gravitons +2. However neutrinos, if they were exactly massless, which is no longer
compatible with experiment, need only have helicity —% since their weak interactions do
not conserve parity and experimentally only involve —% helicity.
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4.5.4 Two Particle States and Angular Momentum Decomposition

Scattering experiments generally involve collisions of two particles. So called in states are
formed from tensor products of free particle states in the distant past. A convenient basis
can be formed starting from two particle states in the centre of mass frame. Initially we
define )

|P,pe3, h1h2> = Ul [B(Oél, eg)] |]31, h1>1 UQ[B(O(Q, 63)] |]§2, —h2)2 5 (4169)

with aq, a9 such that

B(a17e3)ul/f)1,j:(E17pe3)7 B(a27e3)#uﬁ2V:(E27_pe3)7 p>07
1

Pr=(E,0), E=E\+Ey Ei=(m?+p?)?, Ep=(m#+p’)3. (4.170)
A general centre of mass state is obtained by a rotation taking es — p as in (4.135)

|I37pf)7h1h2> = U[R¢,9,—¢] ‘p,p937 h1h2)7
|P,pp, hihs) = |p1, k1), P2, ha)y, DI = (B1,pD), pd' = (Ea,—pP), (4.171)

where U[R] is a rotation generated by the total angular momentum J = J; +J2 and p = pp
as in (4.135). It is easy to see that

p-J|P,p,hihg) = h|P,p, hihs), h=hy—hs. (4.172)
A basis for two particle states |P,p, h1hs) with arbitrary total 4-momentum P* can
be obtained by acting on |P,p,hihs) with a boost taking P*# — P*. For any translation

invariant operator A acting on two particle states the overall momentum conservation o-
function can factored off to defined a reduced matrix element for centre of mass states

(P',p',hhd|A|P, p, hihs) = (2m)*6* (P’ - P) % (p', h'ha || Al[D, haha) . (4.173)

Since
(2m)%4pp2’ 6% (pi' — p1) 0* (P2 — p2) = (2m) 6" (p1 +ps —p1-p2) (477)2§ §*(p',p), (4.174)
with F,p,p’, p defined by transforming py, p2 to the centre of mass frame as in (4.171), then
(B, b h3|[1[[D, hiha) = (47)* 6% (D', D) nurny Onns - (4.175)

Here 6%(p/, ) is the delta function on the unit sphere so that [dQp6%(p',p)f(P) = f(P).

Using the orthogonality condition (3.124) the centre of mass states in (4.169) can be
projected onto states of definite angular momentum by taking

o 1 kil *
|P,JM,hihg) = Ny — fso(ggiuw,w U[Ry0.4]|P,pes, h1h2)D1(\j;)l(R¢,e,w)

82
1 2 2 . o R J) .

:NJ4—fO A9 [ "0 sind [P, pp. hiha) D7) (Ro.-5)" (4.176)
v
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where for the v integration to be non zero requires m = h = h; — ho. These states are then
a basis for two particle states of total angular momentum J,

2m 2 /
(JIM/, hfhg’”l”JM, h1h2> = Nsz(; d¢ /(;de sin 6 D](\j,])z(R¢’9,_¢)D%2(R¢,97_¢)* 6h1’h15h2’h2
= 5J/J 5MIM 6h1’h15h2'h2 R for NJ2 = %;1 . (4]_77)

Using the completeness relation

1 " N
) (2J+1) DY) (Ryr v, o) DS (Ry9—)* = 62(P', D) = 6(cos §'—cos )3(¢' =), (4.178)
J,M

(4.176) can be inverted as an expansion over angular momentum states

|P,pp. hiha) = 3 Ny|P,JM, hiha) D)) . (Rpo.—s). (4.179)
J,M

For a rotationally scalar operator, which commutes with J,
(/M hih | AllTM, haha) = A 650y (4.180)

with A;ﬁm independent of M by virtue of the Wigner-Eckart theorem. With the expansion

(4.179)

. . 1 J J « (7
(B, b AlID: haha) = 5= 32 (27 + 1) Affhn, Dt (Ror.-6)" i (Roo-6)
h' =hi-h9, h=hy—-ho, (4.181)

The two D-functions can be combined using the group property but more simply p can be
chosen to be along the 3-direction giving

(6) =% (4.182)

. 1 J J
(P, hi'h2||Alles, hihg) = yp g (2J+1) Aél’)hg’,hlhg di(zh)’

for p given in terms of #, ¢ according (4.135).

This approach to the angular momentum decomposition of relativistic two particle
states was first introduced by Jacob and Wick.*® It avoids the complications of com-
bining spins and then orbital angular momentum using Clebsch-Gordan coefficients. It was
of course designed to apply to scattering amplitudes for spinning particles where taking

A — S, scattering operator, in (4.182) gives the partial wave decomposition. By virtue

of (4.177) the unitarity condition for elastic scattering amplitudes Sl(z;]')hj,hl n, reduces to
J * al(J . .

S hy by S}(zl”),hz”,hfhd kS',(u,,)hj,?hlh2 = Opy'hy Ohyhy- For the spinless case, using (3.108), (4.182)

becomes the standard expansion in terms of Legendre polynomials.

3¥Maurice René Michel Jacob, 1933-2007, French. Gian Carlo Wick, 1909-1992, Ttalian.
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4.5.5 Spinorial Treatment

Calculations involving Lorentz transformations are almost always much simpler in terms
of SI(2,C) matrices, making use of the isomorphism described in section 4.3, rather than
working out products of 4 x4 matrices A. As an illustration we re-express some of the above
discussion for massless representations in terms of spinors.

Defining
1_ ;2

0, .3
p +p° p —wp
Pac = p“(au)ad ) [pozd] = (pl + ,L-p2 pO _p3 ) ’ (4183)
similarly to (4.52), then for p? = 0

det[paa] =0 = pa = Aada- (4.184)

The spinor A, and its conjugate A4 are arbitrary up to the U(1) transformation given by
Aa = A Ag = Age'l. To determine A, precisely we choose the phase so that Ap is real.
For p given by (4.145) then, for simplicity choosing 2w = 1,

[ﬁaa]=((1) (1)) = iz(é). (4.185)

If p? = pjz =0 then

Diad = Ni,aNiyd Dj,ac = Nj,aNja s (4.186)

and
2050y = Piaa = @], (i) =< Nahig, L) =P Npdia. (4187)
As a consequence of the map SO(3,1) — SI(2,C) then for the massless case
Lp)p=p = A()‘p)j‘ =Ap (4.188)

defines p - A, uniquely, at least up to a sign, satisfying (4.184). For any Lorentz transfor-
mation A - A then (4.163) becomes equivalently

A(Map) T ANA(N) = Aoy an) Ax (4.189)

where, from (4.160), we have correspondingly under SO(3,1) - Si(2,C)

1.
1 a1 -1ias e 2% 0
A(a17d2) g A(a17a2) = (0 1 ) 5 AX - AX = ( 0 eézx) . (4190)
With the definition (4.188) of A, (4.189) implies

Apdp = App e 2XPA) (4.191)
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The spinorial formalism a convenient method of calculating x(p,A). For helicity states
with L(p) as in (4.136) the corresponding SI(2,C) matrix is then

1 Lo w1 —ip-ta
AR(O.m)Ap(a,es) = 20T, - mmaleT (4.192)
sin 50 "7 2 cos 50 e 2%
In (4.188) we can then take
A1 —>\2*/()\12+|)\2|2)) 0 3.1 pl+ip?
A(N) = , Apa=(p +p)2, Npo=—"-", 4.193
0= (3 Ny ) =GP s B )

where the phase ambiguity in A is resolved by requiring A; to be real.

As a illustration we consider three examples

A:AR(a,eg)a )
)\Ap,l =)\p,17 )\Ap,2=eza)\p,1a X(paA) =0,
A=Ares)s X
AAp,1 coszp  —singp\ (A1 lin 1 1 pl +ip?

) = ez’ tansn=tansp———%, AN)=n,
()\Ap72 sin%p cos%p Ap.2 oK) 2P 0 + p3 x(p,A) =n
A:B(ﬁ,eg),

_ (e* - DAp1Ap2"
(Ap, 12 + A 2l2) (Api2 + €728 Ap2f?)
(4.194)

1 _1 .
AAp,1 2626/\1)71, Ap2=¢€ 25)\:071, x =0, a1 —ias

4.6 Casimir Operators

For the rotation group then from the generators J it is possible to construct an invariant
operator J? which commutes with all generators, as in (3.83), so that all vectors belonging
to any irreducible representation space have the same eigenvalue, for V;, j(j +1). Such
operators, which are quadratic or possibly higher order in the generators, are generically
called Casimir®® operators. Of course only algebraically independent Casimir operators are
of interest.

For the Lorentz group, SO(3,1), there are two basic Casimir operators which can be
formed from M, using the invariant tensors

TMM My, 7P MMy, . (4.195)

In terms of the generators J, K, defined in (4.37),(4.41), and then J*, defined in (4.46),
TMM My, = (3P -K?) =T+ 372,
LM My, =3 K = —i(J72-372). (4.196)

39Hendrik Brugt Gerhard Casimir, 1909-2000, Dutch.
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Since J* both obey standard angular momentum commutation relations, as in (4.47), then
for finite dimensional irreducible representations

J? -G+, I 3G+, 5,7=0,5,1,5,.... (4.197)

For the fundamental spinor representation the generators s, = Lio

5 7,1, as in (4.67),
the associated Casimir operators become

1z

1 pv _ 1 _pu=v — — _3
15" s = — 55 0"0%(0u0, —0,0,) =51,
1 _pvop -1 pvop_ > 5 — _3;
5" s s0p = 356" 0,0,0,5, = —5i 1, (4.198)

using (4.49) and (4.91). As expected this is in accord with (4.196) and (4.197) for j = %,
7 =0. Conversely for 5,, the role of j and 7 are interchanged since this is the conjugate
representation.

For the Poincaré group then (4.195) no longer provides Casimir operators because they
fail to commute with P,. There is now only a single quadratic Casimir

P?=P'P,, (4.199)

whose eigenvalues acting on the irreducible spaces Vp, s, Vs, corresponding to the spaces of
relativistic single particle states, give the invariant m? in the massive case or zero in the
massless case. However the irreducible representations are also characterised by a spin label
s, helicity in the massless case. To find an invariant characterisation of this we introduce
the Pauli-Lubanski vector,

Wh=1L1etoPp,M,, = 3P M,,P, . (4.200)

Using e""°P P, P, = 0 we have
(WH P,]=0. (4.201)

Since e#"?? is an invariant tensor then W* should be a contravariant 4-vector, to verify this
we may use

[WH, 3w M,,] = - 3ie7P(Pyw?, My, + Py Myyw’ o + Py Myyw's)
= Liwt NP P, My, = iwh AW, (4.202)
to obtain
[(WH, M,,] = i(6",W, - 6%, W,). (4.203)

With (4.201) and (4.203) we may then easily derive

WHWY] =iet?PP,W,. 4.204
p

It follows from (4.201) and (4.203) that
W, W, (4.205)

is a scalar commuting with P,,, M,, and so providing an additional Casimir operator.
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For the massive representations then, for p as in (4.121),
WOp,ss3) =0,  W'B,ss3) = —meijpMjlp, s s3) = —m Jilp, s 53) , (4.206)

so that
W, WHp, s 53) = —m> I2|p, s 53) = ~m?s(s + 1)[p, s 53) - (4.207)

Hence W, W* has the eigenvalue -m?2s(s + 1) for all vectors in the representation space
Vim,s-

For the massless representations then, for p as in (4.145),

Wp,h) =& Eslp,h) =0, W2|p,h) =~ Ey|p,h) = 0,
W0|ﬁa h> = _(D J3|]57h> = _(b h’|ﬁa h)a W3|}3>h> = _dj J3|]37 h) = _(z} hllih’)? (4208)

using (4.157). Since WH#, P* are both contravariant 4-vectors the result (4.208) requires
(W™ + h P)|p, h) = 0, (4.209)

for all vectors providing a basis for V},. This provides an invariant characterisation of the
helicity h on this representation space.

4.7 Quantum Fields

To construct a relativistic quantum mechanics compatible with the general principles of
quantum mechanics it is essentially inevitable to use quantum field theory. The quantum
fields are required to have simple transformation properties under the symmetry trans-
formations belonging to the Poincaré group. For a simple scalar field, depending on the
space-time coordinates x*, this is achieved by

UlA, a]o(x)U[A,a]™ = ¢(Az +a), (4.210)

where U[A, a] are the unitary operators satisfying (4.100). For an infinitesimal transforma-
tion, with A as in (4.14) and U as in (4.101), this gives

—i[ 30" My, — a" Py, ¢(2)] = (wva” + a")9ué(x) | (4.211)
[MMW ¢(33)] = _Luu¢(x) ) Luu = i(xuay - %8“) , [Pl“ (Z)($)] = —Z@M(;S(x) . (4212)

L,, and i0, obey the same commutation relations as M, and P, in (4.32) and (4.104).
Note that, with (4.106), [P, ¢] =i V.

To describe particles with spin the quantum fields are required to transform according
to a finite dimensional representation of the Lorentz group so that (4.210) is extended to

UlA, a]é(x)U[A,a]™ = D(A) 'o(Az +a), (4.213)
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regarding ¢ now as a column vector and suppressing matrix indices. For an infinitesimal
Lorentz transformation then assuming

D(A) =1-i30"™ S, Su =-S5, (4.214)
the commutator with M, in (4.212) is extended to

[M;wa P(x)] = _(Luu + Suu)¢(x) . (4.215)
The matrix generators S,,, obey the same commutators as M), in (4.32).

The relation of the quantum fields to the particle state representations considered in 4.5
is elucidated by considering, considering first Vy, s,

(016(2)|p, s 53) = u(p,s3) €%, p*=m?. (4.216)

Here |0) is the vacuum state, which is just a singlet under the Poincaré group, U[A, a]|0) =
|0). It is easy to check that (4.216) is accord with translation invariance using (4.128).
Using (4.213), for a =0, A - A™!, with (4.127) we get

D(A)u(p.s3) = ) u(Ap.s5) DG, (R(p.A)). (4.217)

which is directly analogous to (4.127) but involves the finite dimensional representation
matrix D(A). u(p,ss) thus allows the complicated Wigner rotation of spin indices given
by R(p,A) to be replaced by a Lorentz transformation, in some representation, depending
just on A. To determine u(p, s3) precisely so as to be in accord with (4.217) it is sufficient
to follow the identical route to that which determined the states |p, ss3) in 4.5.1. Thus it
is sufficient to require, as in (4.125),

D(Ag)u(p,s3) = 3. u(p,s'3) DS (R), (4.218)

s'3

and then define, as in (4.126),

u(p, s3) = D(L(p)) u(p, s3) - (4.219)

For A reduced to a rotation Apg, as in (4.17), the representation given by the matrices
D(AR) decomposes into a direct sum of irreducible SO(3) representations DU)(R). For
(4.218) to be possible this decomposition must include, by virtue of Schur’s lemmas, the
irreducible representation j = s, with any other DU ), j # s, annihilating u(p, s3).

For the zero mass case the discussion is more involved so we focus on a particular case
when the helicity A = 1 and the associated quantum field is a 4-vector A*. Replacing (4.216)
we require

(0] A" (z)[p, 1) = e*(p) e™™®*,  p*=0. (4.220)

e(p) is referred to as a polarisation vector. For 4-vectors there is an associated represen-
tation of the Lorentz group which is just given, of course, by the Lorentz transformation
matrices A themselves. When p = p as in (4.145) then from the little group transformations
as in (4.163) we require, for h =1,

Aye(p) = e(p)e™™ . (4.221)
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Using (4.160) this determines €(p) to be

' (p) = 15(0,1,4,0), (4.222)
with a normalisation €* - € = —1. Furthermore from the explicit form for A, 4,) also in
(4.160) we then obtain

Aara)€(®) =€(p) +cp,  c=5(ar1+az). (4.223)

For general momentum p = w(1,n), p> = 0, as in (4.166), we may define, for L(p) given by
(4.136),

e(p) = L(p) €(p) = Ag(n) €(P) , (4.224)

since B(a,e3)e(p) = €(p), and where the rotation R(n) is determined by n just as in (4.136).
With the definition (4.224)

pue(p) = pue”(p) =0. (4.225)
For a general Lorentz transformation A then from (4.163) and (4.221),(4.222)
Ae(p) = (e(Ap) + cAp) e XN (4.226)

for some ¢ depending on p, A. This matches (4.165), for h = 1, save for the inhomogeneous
term proportional to ¢ (for h = -1 it is sufficient to take e(p) — e(p)*). (4.226) shows that
€(p) does not transform in a Lorentz covariant fashion. Homogeneous Lorentz transforma-
tions are obtained if, instead of considering just €(p), we consider the equivalence classes
polarisation vectors {e(p) :~} with the equivalence relation

e(p) ~e(p) +cp, for arbitrary c. (4.227)

This is the same as saying that the polarisation vectors €(p) are arbitrary up to the addition
of any multiple of the momentum vector p. It is important to note that, because of (4.225),
that scalar products of polarisation vectors depend only on their equivalence classes so that

€(p) -(p)=e(p) -e(p) for €(p)~e(p). (4.228)

The gauge freedom in (4.227) is a reflection of gauge invariance which is a necessary feature
of field theories when massless particles are described by quantum fields transforming in a
Lorentz covariant fashion.

In general Lorentz covariant fields contain more degrees of freedom than those for the
associated particle which are labelled by the spin or helicity in the massless case. It is then
necessary to impose supplementary conditions to reduce the number of degrees of freedom,
e.g. for a massive 4-vector field ¢#, associated with a spin one particle, requiring 9,,¢* = 0.
For the massless case then there are gauge transformations belonging to a gauge group
which eliminate degrees of freedom so that just two helicities remain. Although this can be
achieved for free particles of arbitrary spin there are inconsistencies when interactions are
introduced for higher spins, beyond spin one in the massive case with spin two also allowed
for massless particles.
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5 Lie Groups and Lie Algebras

Although many discussions of groups emphasise finite discrete groups the groups of most
widespread relevance in high energy physics are Lie groups which depend continuously on a
finite number of parameters. In many ways the theory of Lie*” groups is more accessible than
that for finite discrete groups, the classification of the former was completed by Cartan*!
over 100 years ago while the latter was only finalised in the late 1970’s and early 1980’s.

A Lie Group is of course a group but also has the structure of a differentiable manifold, so
that some of the methods of differential geometry are relevant. It is important to recognise
that abstract group elements cannot be added, unlike matrices, so the notion of derivative
needs some care. For a Lie group G, with an associated n-dimensional differential manifold
Mg, then for an arbitrary element

g(a)eG, a=(a',...,a") eR™ coordinates on M. (5.1)

n is the dimension of the Lie group G. For any interesting Mg no choice of coordinates is
valid on the whole of M, it is necessary to choose different coordinates for various subsets of
Mg, which collectively cover the whole of M and form a corresponding set of coordinate
charts, and then require that there are smooth transformations between coordinates on
the overlaps between coordinate charts. Such issues are generally mentioned here only in
passing.

For group multiplication we then require
g9(a)g(b) =g(c) = " =¢"(a,b), r=1,....n, (5.2)

where ¢" is continuously differentiable. It is generally convenient to choose the origin of
the coordinates to be the identity so that

9(0)=e = ¢"(0,a) =¢"(a,0) =a", (5.3)
and then for the inverse
gla) " =g@) = ¢ (a,a)=¢"(a,a)=0. (5.4)
The crucial associativity condition is then
9(a)(9(0)g(c)) = (9(a)g(®))g(c) = ¢"(a, (b)) = ¢"(p(a,b),c).  (5.5)

A Lie group may be identified with the associated differentiable manifold Mg together with
amap ¢: Mg x Mg — Mg, where ¢ satisfies (5.3), (5.4) and (5.5).

For an abelian group ¢(a,b) = ¢(b,a) and it is possible to choose coordinates such that

¢ (a,b)=a" +0", (5.6)

49Marius Sophus Lie, 1842-1899, Norwegian.
Elie Joseph Cartan, 1869-1951, French.
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and in general if we Taylor expand ¢ we must have
©"(a,b) =a" +b" + g a®bt + O(a®b,ab?), @ =-a" + " ata' + O(a®). (5.7)

As will become apparent the coefficients ¢y, or rather f"s; = ¢'[), which satisfy conditions
arising from the associativity condition (5.5), essentially determine the various possible Lie
groups.

As an illustration we return again to SU(2). For 2 x 2 matrices A we may express them
in terms of the Pauli matrices by

A=upl+iu-o, Al =y l-iu-o. (5.8)
Requiring ug,u to be real then
ATA = (u +u?) 1, det A = ug? +u?. (5.9)

Hence
AeSU(2) = u@ +u=1. (5.10)

The condition ug +u? = 1 defines the three dimensional sphere S? embedded in R, so that
My (o) = S3. In terms of differential geometry all points on S° are equivalent but here
the pole ug = 1, u = 0 is special as it corresponds to the identity. For SO(3) then, since
+A correspond to the same element of SO(3), we must identify (up,u) and —(up,u), i.e.
antipodal points at the ends of any diameter on S3. In the hemisphere ug > 0 we may use
u, [u| < 1 as coordinates for SU(2), since then up = V1 —u2. Then group multiplication
defines p(u,v) =u+v-uxv+....

For A e SI(2,C) then if ATA=¢e?V, for VI =V, R= Ae™V satisfies RTR = I. Since then
det R = €' while dete" = e"(V) is real, det A = 1 requires both det R = 1 and tr(V) = 0.
Hence there is a unique decomposition A = Re" with V = V;o; so that the group manifold
Mgi2,0) = S3 x R3.

5.0.1 Vector Fields, Differential Forms and Lie Brackets

For any differentiable n-dimensional manifold M, with coordinates z*, then scalar functions
f: M = R are defined in terms of these coordinates by f(x) such that under a change of
coordinates z* — /" we have f(z) = f'(2'). Vector fields are defined in terms of differential
operators acting on scalar functions

X(z) = X'(z) o (5.11)
where for the z — 2’ change in coordinates we require
. o't .
X9 (z) % = X" {(2'). (5.12)

For each x the vector fields belong to a linear vector space T,(M) of dimension n, the
tangent space at the point specified by .
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For two vector fields X, Y belonging to T,,(M) the Lie bracket, or commutator, defines
a further vector field

[X,Y]=-[Y,X], (5.13)
where ' ' '
(X, Y] (z) = X(2)Y'(2) - Y (2)X"(x), (5.14)
since, for a change x — 2’ and using (5.12),
(X, Y] =[x"Y'], (5.15)
as a consequence of 82?3; = aiigg;r The Lie bracket is clearly linear, so that for any

X,Y, Z € Ty(M)
[aX +BY, Z] = a[X,Y] +B[Y, Z], (5.16)

as in necessary for the Lie bracket to be defined on the vector space T, (M), and it also
satisfies crucially the Jacobi*? identity, which requires

[X,[Y,Z]]+[Z,[X,Y]]+]Y,[Z,X]]=0. (5.17)

This follows directly from the definition of the Lie Bracket as a commutator of differential
operators.

Dual to vector fields are one-forms, belonging to T,,(M)*,
w(z) = wi(z)dz’, (5.18)

where (dz’,9;) = §%. For z —» 2’ now

oz’
wj(:v) ﬁ = w'i(:v’) . (519)
For p-forms
p(x) = }%pil__,ip(a:) dz™ A A da' dz' Ada? = —da? Adat, (5.20)

so that pj,..i, = p[i,..;,]- The transformations p — p’ for a change of coordinates z — x’ are
the natural multi-linear extension of (5.19). For an n-dimensional space dz'" A--- A dz/™ =
ax/i

det [W] dz® A--- Adz' and we may require

dz™ A+ Adain = ghin diy (5.21)
with 1 the n-dimensional antisymmetric symbol and d"z the corresponding volume

element. If p is a n-form and M,, a n-dimensional manifold this allows the definition of the
integral

. 5.22
P (5.22)

The eaterior derivative d acts on p-forms to give (p + 1)-forms, dp = dz* A 8;p. For the
one-form in (5.18) the corresponding two-form is then given by

(dw)”(az) = 81'(4)]‘(1,‘) - iji(ﬂf) . (523)

42Carl Gustav Jacob Jacobi, 1804-1851, German.
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Of course (dw)’ = d'w’ with d’ = dz''9’;. In general d? = 0. If p is a closed p-form then
dp=0. (5.24)
A trivial solution of (5.24) is provided by
p=dw, (5.25)

for some (p—1)-form w. In this case p is exzact. If the n-form p in (5.22) is exact and if also
if M,, is closed then the integral is zero.

5.1 Lie Algebras

The additional structure associated with a differential manifold M corresponding to a Lie
group G ensures that the tangent spaces Ty(M¢), for a point on the manifold for which the
group element is g, can be related by group transformations. In particular the tangent space
at the origin T.(M) plays a special role and together with the associated Lie bracket [, ]
defines the Lie algebra g for the Lie group. For all points on M there is a space of vector
fields which are invariant in a precise fashion under the action of group transformations
and which belong to a Lie algebra isomorphic to g. There are also corresponding invariant
one-forms.

To demonstrate these results we consider how a group element close to the identity
generates a small change in an arbitrary group element ¢g(b) when multiplied on the right,

g(b+db) =g(b)g(#), 0 infinitesimal = b"+db" =¢"(b,0), (5.26)

so that

A = 0" (0) e (b) = 5o (0.0))

Here we use a, b, ¢ as indices referring to components for vectors or one-forms belonging to
Te(Mg) or its dual (which must be distinguished from their use as coordinates) and r, s, ¢
for indices at an arbitrary point. To consider the group action on the tangent spaces we
analyse the infinitesimal variation of (5.2) for fixed g(a),

g(c+de) = g(a) g(b+db) = g(c) g(9), (5.28)

. (5.27)

so that, for fixed g(a),
de” = 0% ug" (¢) = db® X\*(b) pua" (), (5.29)

using (5.27) and defining A(b) as the matrix inverse of u(b),
A1 =[O, A (B) pa" (b) = 64 (5.30)

Hence from from (5.29)

oc"
obs

If near the identity we assume (5.7) then 1,°(0) = &’

= 2%(b) pa” (€) (5.31)
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By virtue of (5.31)

0 oc" 0

Ta(b) = /’Las(b) abs = /’Las(b) abs 067‘

=Ty (c), (5.32)

define a basis {T, : a = 1,...,n} of left-invariant vector fields belonging to T (M), since
they are unchanged as linear differential operators under transformations corresponding to
g(b) = g(c) = g(a)g(b). Furthermore the corresponding vector space, formed by constant
linear combinations g = {67, }, is closed under taking the Lie bracket for any two vectors
belonging to g and defines the Lie algebra.

To verify closure we consider the second derivative of ¢"(b) where from (5.31) and (5.32)

207"
o () (0) oo = OB (0 (0) 1 ()
= ,uas(b)(Tb(b))‘sc(b) ,U/cr(c) + )\sc(b) Tb(C)UcT(C)) . (533)
For any matrix X' = X 16X X! so that from (5.30)
Ty (D) As (D) = =As (b)Y (To(b) a™ (b)) M (D) (5.34)

which allows (5.33) to be written as

S 826T u (& T T
Ha* ()’ (0) moms = =Th(B)pa" (B) A (b)pe” () + Th(e) e () (5.35)
or, transporting all indices so as to refer to the identity tangent space,
s t 820r c T c T c
Ha (b):ub (b) IbsObt )\r (C) = _(Tb(b)/fba (b))/\r (b) + (Tb(c):ua (C)))\r (C) . (5'36)
Since
0%c" 0%c"

ObsObt  Obtobs (5.37)

the right hand side of (5.36) must be symmetric in a,b. Imposing that the antisymmetric
part vanishes requires

(Ta(@)" (0) = Ty(b)pa" (0) )M (D) = fap (5.38)

where [, are the structure constants for the Lie algebra. They are constants since (5.36)
requires that (5.38) is invariant under b — ¢. Clearly

(5:39)

From (5.30), (5.38) can be equally written just as first order differential equations in terms
of u,

‘ Ty ,ubr =T ,uar = fcab /J’CT ) ‘ (5-40)

or more simply it determines the Lie brackets of the vector fields in (5.32)

(To, Tp] = f Te, (5.41)
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ensuring that the Lie algebra is closed.

The Jacobi identity (5.17) requires
[Taa [Tbch]] + [Tm [Taa Tb]] + [Tb7 [TCa Ta]] =0, (5'42)

or in terms of the structure constants

feadfdbc + fecdfdab + febdfdca =0. (543)

(5.43) is a necessary integrability condition for (5.40) which in turn is necessary for the
integrability of (5.31).

The results (5.31), (5.40) with (5.42) and (5.39) are the contents of Lie’s fundamental
theorems for Lie groups.

Alternatively from (5.33) using

8 T u a C T
(€)= e (€ MO 1 (). (5.44)
we may obtain
0%c 0 0
OV ip' (0) =—= () = (D) pp" (b) == As (D) — 1" () pta™(€) == Au“(€) - 4
pa* D) (0) 2N () = pra” (B! () A 0) = 1 (Dpa (€) 5 (@) (5.45)
In a similar fashion as before this leads to
S a C S 8 (& (&
Ha (b)ﬂbt(b) %As (b) = 1 (b)Uat(b) @)\s (0) = fab» (5.46)
which is equivalent to (5.38), or
0 0 b
sC(b) - (b)) = =fu ANt (D)NS (D). 4
SN = A (B) = = M DAL (D) (547
Defining the left invariant one-forms
w?(b) =db" A\ (b), (5.48)

the result is expressible more succinctly, as consequence of (5.23), by
dw® = —%fbbc W’ AwC. (5.49)

. 1
Note that, using d(w® A w®) = dw® A w® - wb A dw®, d?w® = —ifab[cfbde] W A w?

virtue of the Jacobi identity (5.43).

Aw® =0 by

In general a n-dimensional manifold for which there are n vector fields which are linearly
independent and non zero at each point is parallelisable. Examples are the circle S' and
the 3-sphere S3. A Lie group defines a parallelisable manifold since a basis for non zero
vector fields is given by the left invariant fields in (5.32), the group U(1) corresponds to S*
and SU(2) to S°.
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5.2 Lie Algebra Definitions

In general a Lie algebra is a vector space g with a commutator [, | : g x g - g satisfying
(5.13), (5.16) and (5.17), or in terms of a basis {1y}, satisfying (5.41), with (5.39), and
(5.42) or (5.43). Various crucial definitions, which are often linked to associated definitions
for groups, are given below.

Two Lie algebras g, g’ are isomorphic, g ~ ¢’, if there is a mapping between elements of
the Lie algebras X < X’ such that [X,Y] = [X',Y']. If g = g’ the map is an automorphism
of the Lie algebra. For any g automorphisms form a group, the automorphism group of g.

The Lie algebra is abelian, corresponding to an abelian Lie group, if all commutators
are zero, [X,Y] =0 for all X,Y eg.

A subalgebra b c g forms a Lie algebra itself and so is closed under commutation. If
H c G is a Lie group then its Lie algebra § is a subalgebra of g.

An invariant subalgebra or ideal h c g is such that
[X,Y]eh forall Yebh, Xeg. (5.50)
If H is a normal Lie subgroup then its Lie algebra forms an ideal. Note that
i=[gg]={[XY]: X,V eg}, (5.51)
forms an ideal i c g, since [Z,[X,Y]] €i for all Z € g. i is called the derived algebra.
The centre of a Lie algebra g, Z(g) ={Y : [X,Y] =0 for all X €g}.
A Lie algebra is simple if it does not contain any invariant subalgebra.

A Lie algebra is semi-simple if it does not contain any invariant abelian subalgebra.

Using the notation in (5.51) and we may define in a similar fashion a sequence of
successive invariant derived subalgebras g(™, n=1,2,..., forming the derived series by

o =g g™, ¢ =[a0]. (5.52)

A Lie algebra g is solvable if g"*1) = 0 for some n, and so g™ is abelian and the derived
series terminates.

Solvable and semi-simple Lie algebras are clearly mutually exclusive. Lie algebras may
be neither solvable nor semi-simple but in general they may be decomposed in terms of such
Lie algebras.

The direct sum of two Lie algebras, g = g1 ® go = {X1 + Xo: X1 € g1, X2 € go}, with the
commutator
[Xl +X2,Y1+}/2] = [X17X2]+[Y1,Y2]. (553)

It is easy to see that the direct sum g contains g; and go as invariant subalgebras so that g
is not simple. The Lie algebra for the direct product of two Lie groups G = G1 ® G» is the
direct sum g; @ go.

142



If a Lie algebra g can be defined to act linearly on a Lie algebra h such that
Yo vyX, o)X oYX =vIXXT forall Yep, X, X'eg, (5.54)

then we may define the semi-direct sum Lie algebra g @, h ={X +Y : X € h,Y € b} with
commutators [X+Y, X'+Y'] = [X, X']+Y' =YX +[V,Y']. b forms an invariant subalgebra
of g @, h. The semi-direct sum of Lie algebras arises from the semi-direct product of Lie
groups.

5.3 Matrix Lie Algebras and Matrix Lie Groups

The definition of the Lie algebra is more straightforward for matrix Lie groups. For a matrix
group there are matrices D(a), depending on the parameters a”, realising the basic group
multiplication rule (5.2),

D(a)D(b) = D(c). (5.55)

For group elements close to the identity with infinitesimal parameters 6% we can now write
D(0) =1 +0%,, (5.56)
which defins a set of matrices {t,} forming the generators for this matrix group. Writing

0

D(b+db) = D(b) + =D (). (5.57)
then (5.26) becomes
db"%D(b) = 0°T,D(b) = D(b)8%, , (5.58)
using (5.27) along with (5.32). Clearly
T,D(b) = D(b)t.a, (5.59)
and it then follows from (5.41) that
[ta; ts] = f avte - (5.60)

The matrix generators {¢,} hence obey the same Lie algebra commutation relations as {1},
and may be used to directly define the Lie algebra instead of the more abstract treatment
in terms of vector fields.

5.3.1 SU(2) Example

As a particular illustration we revisit SU(2) and following (5.8) and (5.10) write
A(u)=ul+iu-o up=vV1-u?. (5.61)

This parameterisation is valid for ug > 0. With, for infinitesimal 8, A(0) =1+:60-0 we get,
using the standard results (3.20) to simplify products of Pauli matrices,

A(u+du) = A(u)A0)=up-u-0+i(u+upf-ux0)- o, (5.62)
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and hence
du=ap@-ux0, or du;=0iju;(u), pj(a)=ugdj+ugejp. (5.63)

The vector fields forming a basis for the Lie algebra su(2) are then

Tj(u)=,ujz‘(u)8i = T=ugVu+tuxVy. (5.64)
Since
TA(u) = A(u)io, (5.65)

and [0y, 0;] = 2ig;j,0%, the Lie bracket must be

|:Ti7 TJ] =-2 Eijk Tk . (566)

5.3.2 Upper Triangular Matrices

The upper triangular and the strictly upper triangular matrices

r T T T 0O z = . «x
0 =z «x T 0 0 =z T

b={l0 0 =z x| n=<]0 0 0 x| (5.67)
0 0 O T 0 0 0 0

form Lie algebras with the commutator defined by usual matrix multiplication. It is easy
to see that
n=[b,b], (5.68)

and that the Lie algebras b and hence also n are solvable.

5.3.3 Representations and Lie Algebras

There is an intimate relation between representations of Lie algebras and Lie Groups. Just
as described for groups in 2, a representation of a Lie algebra g is of course such that for
any X € g there are corresponding matrices D(X) such that D([X,Y]) = [D(X),D(Y)],
where [D(X), D(Y)] is the matrix commutator. For convenience we may take D(Ty) = t,
where {t,} form a basis of matrices in the representation satisfying (5.60), following from
(5.41). As for groups an irreducible representation of the Lie algebra is when there are no
invariant subspaces of the corresponding representation space V under the action of all the
Lie algebra generators on V. Just as for groups there is always a trivial representation by
taking D(X) =0.

The generators may be defined in terms of the representation matrices for group elements
which are close to the identity,

D(g(0)) =1 +6%,+0(0%),  D(g(0)) =1 -0%, +0(6?). (5.69)
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For unitary representations, as in (2.37), the matrix generators are then anti-hermitian,
= —tq. (5.70)

If the representation matrices have unit determinant, since det(1+€X) = 1 +etr(X)+O(e?),
we must also have
tr(te) =0. (5.71)

In a physics context it is commonplace to redefine the matrix generators so that t, = —it,
so that, instead of (5.70), the generators t, are hermitian and satisfy the commutation
relations [tq,%] = i fSpte.

Two representations of a Lie algebra {t;} and {t,} are equivalent if, for some non
singular S,
= St,87t. (5.72)

For both representations to be unitary then S must be unitary. If the representation is
irreducible then, by applying Schur’s lemma,

ta=StyS™ or [S,t,]=0 = SeolI. (5.73)
The complex conjugate of a representation is also a representation, in general it is
inequivalent. If it is equivalent then, for some C,
te = Ct,C, (5.74)
or for a unitary representation, assuming (5.70),
Ct, 0t =~ . (5.75)

Following the same argument as in 2.3.2, combining (5.75) with its transpose we get
C'TCt,C'CT =t, so that for an irreducible representation

Cl'TC=cl = C=c¢C" = c=4l1. (5.76)
If C = C7 then, by a transformation C - STCS together with ¢, - S™'¢,S, we can take
C = I and the representation is real. If C = —CT the representation is pseudo-real. For

det C # 0 the representation must be even dimensional, 2n. By a transformation we may
take C' = J, J? = I, where J is defined in (1.108). The representation matrices then satisfy
D(g(9))" = =JD(g(#))J, which is just as in (1.79). This is sufficient to ensure that the
pseudo-real representation formed by {D(g(6))} can be expressed in terms of n xn matrices
of quaternions, and so such representations are also referred to as quaternionic.

The SO(3) spinor representation described in section 3.14 is pseudo-real since
CoCl=-0" for C=ioy=(91}), (5.77)
which is equivalent to (3.296).
A corollary of (5.75) is that,for real or pseudo-real representations,
tr(t(a1 . ..tan)) =0 for n odd. (5.78)
For n = 3 this has important consequences in the discussion of anomalies in quantum field

theories.
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5.4 Relation of Lie Algebras to Lie Groups

The Lie algebra of a Lie group is determined by those group elements close to the identity.
Nevertheless the Lie group can be reconstructed from the Lie algebra subject to various
topological caveats. Firstly the group must be connected, for elements g € G there is a
continuous path g(s) with g(0) = e and g(1) = g. Thus we must exclude reflections so
that SO(3) and SO(3,1)" are the connected groups corresponding to rotations and Lorentz
transformations. Secondly for a Lie group G having a centre Z(G) which is a discrete
abelian group, then for any subgroup Hz(G) c Z(G), where Hz(G) = {h} with gh = hg
for all g € G, the group G/Hz(G), defined by g ~ gh, is also a Lie group with the same Lie
algebra as G. As an example SO(3) and SU(2) have the the same Lie algebra although
SO(3) ~ SU(2)/Zs where Zy = Z(SU(2)).

5.4.1 One-Parameter Subgroups

For any element 0T, € g there is a one-parameter subgroup of the associated Lie Group G
corresponding to a path in Mg whose tangent at the identity is 8*T,. With coordinates a"
the path is defined by al, with s € R, where

d
N ag = ga/‘ar(as) ) CLS =0, or d_ g(as) = HaTa(as) g(as) . (5'79)
s s
To verify that this forms a subgroup consider g(c) = g(a;)g(as) where from (5.2)
" =¢"(at,as) . (5.80)

Using (5.79) with (5.31) we get

a T a u T T T T
5:C = 0% 110" (as) Ma® (as) " () = 007 (¢) c |S:0 =aj. (5.81)

The equation is then identical with (5.79), save for the initial condition at s = 0, and the
solution then becomes

" =ag, = gla)g(as)=g(as). (5.82)
Since
g(as)™ =glas), (5.83)

then {g(as)} forms an abelian subgroup of G depending on the parameter s. We may then
define an exponential map

exp:g—>G, (5.84)
by
g(as) =exp(s6T,) . (5.85)
For any representation we have
D(g(as)) = e, (5.86)

where t, are the matrix generators and the matrix exponential may be defined as an infinite

power series, satisfying of course !X e*¥ = e(5*)X for any matrix X.
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5.4.2 Baker Cambell Hausdorff Formula

In order to complete the construction of the Lie group G from the Lie algebra g it is
necessary to show how the group multiplication rules for elements belonging to different
one-parameter groups may be determined, i.e for any X,Y € g we require

exp(tX) exp(tY) = exp(Z(1)), Z(t)eg. (5.87)

The Baker Cambell Hausdorff*3 formula gives an infinite series for Z(t) in powers of ¢ whose
first terms are of the form

Z(t) =t(X +Y) + (X, Y]+ 5([X, [X, Y]] - [\, [X,Y]]) + O(¢"), (5.88)

where the higher order terms involve further nested commutators of X and Y and so are
determined by the Lie algebra g. For an abelian group we just have Z(t) =t(X +Y). The
higher order terms do not have a unique form since they can be rearranged using the Jacobi
identity. Needless to say the general expression is virtually never a practical method of
calculating group products, for once existence is more interesting than the final explicit
formula.

We discuss here the corresponding matrix identity rather than consider the result for
an abstract Lie algebra. It is necessary in the derivation to show how matrix exponentials
can be differentiated so we first consider the matrix expression

£(s) = e3(2+62) =2 (5.89)
and then d
()= G020 57 6757 = 5257 77 + O(522). (5.90)
Solving this equation
F) =1+ /Olds 257 % £ 0(627), (5.91)
so that .
eZ0% _Z - [0 ds e267 (1797 £ 0(522). (5.92)
Hence for any Z(t) we have the result for the derivative of its exponential
%ez(t) - fo 45 32 %Z(t) c(1=9)2() (5.93)

If, instead of (5.87), we suppose,

X ety = M) (5.94)
then
%(etX V) et X 2 X 1t X y e tX
d 1 d
=% eZM) =20 - fo ds es2®) o Z(t) e M) (5.95)

“3Henry Frederick Baker, 1866-1956, British, senior wrangler 1887. John Edward Cambell, 1862-1924,
Irish. Felix Hausdorff, 1868-1942, German.
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With the initial condition Z(0) = 0 this equation then allows Z(¢) to be determined. To
proceed further, using the formula for the exponential expansion

e*Be =B +[A,B]+i[A[AB]]+..., (5.96)

(5.95) can be rewritten as an expansion in multiple commutators

X+ Xy et = S z00) 4 Z 1)‘ [Z(),.. [Z(t) Z(t)] . (5.97)

—_———
n
which may be solved iteratively by writing Z(t) = Y02, Z,t".
The results may be made somewhat more explicit if we adopt the notation
XYY =3 f [X,. L [X Y]] for f(z)= ) faa”, (5.98)
n=0 n=0

| ——
n

so that (5.96) becomes e Be™ = eA" B. Then, since folds e’* = (e -1)/z, (5.95) can be
written as

d a a

3 20 = (0 (X + XY, (5.99)
for, using the standard series expansion of In(1 + x),

nx " n
fy= 8= 5 S oy (5.100)
n=0
Since
2O = 2O [] o=2(1) _ X Y [] otV o=tX _ etxadetyadU, (5.101)

we may replace e (0 L XY™ o1 the right hand side of (5.99). With some intricate
combinatorics (5.99) may then be expanded as a power series in ¢ which on integration gives
a series expansion for Z(¢) (a formula can be found on Wikipedia).

A simple corollary of these results is

e X oY X Y _ PP IX Y0 (5.102)

so this combination of group elements isolates the commutator [X,Y] as t - 0.

5.5 Simply Connected Lie Groups and Covering Groups

For a connected topological manifold M then for any two points x1,z9 € M there are
continuous paths p,, ., linking z1 and x2 defined by functions p,, ., (s), 0 < s < 1, where
Pay—25(0) = X1, Doy, (1) = xo. For three points x1,x9,z3 a composition rule for paths
linking x1,x2 and xs,x3 is given by

IN
V)
IN

1
i’ (5.103)

IN
»
IN

Pay—a2(28)
— o — S) =
(Pa1>2 © Payas ) (S) {pmﬂs(%_l)?

v~ O
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For any p,, s, the corresponding inverse, and also the trivial identity path, are defined by

p;;—mzl (S) = p$1—>$2(1 - S) ) pizdﬁx(s) =T. (5104)

The set of paths give topological information about M by restricting to equivalence, or
homotopy, classes [Pz, —uy] = {Pyowy  Peyszs ~ Pri—as b, Where the homotopy equivalence
relation requires that p';, 4, (s) can be continuously transformed to pz, 4, (s). These ho-
motopy classes inherit the composition rule [pz,—z,] © [Poyszs] = [Pzi>zs © Dog—sas]- The
fundamental group for M is defined in terms of homotopy classes of closed paths starting
and ending at an arbitrary point x € M,

T (M) = {[pa=al} (5.105)

This defines a group using the composition rule for group multiplication and for the identity
e = [p'4,,] and for the inverse [pyoz]~" = [pyL.]. For M connected m (M) is independent of
the point 2 chosen in (5.105). M is simply connected if w1 (M) is trivial, so that p,_, ~ pizd_,x
for all closed paths. If 71 (M) is non trivial then M is multiply connected, if dim (M) =n
there are n homotopy classes [pz, -z, | for any =1, zs.

For Lie groups we can then define 71 (G) = m1 (M ). In many examples this is non trivial.
For the rotation group SO(3), as described earlier, Mg (3) ~ 8374 where antipodal points,
at the end of diameters, are identified. Alternatively, by virtue of (3.8), Mgq(3) may be
identified with a ball of radius 7 in three dimensions with again antipodal points on the
boundary S? identified. There are then closed paths, starting and finishing at the same
point, which involve a jump between two antipodal points on S3, or the surface of the ball,
and which therefore cannot be contracted to the trivial constant path. For two antipodal
jumps then by smoothly moving the corresponding diameters to coincide the closed path
can be contracted to the trivial path. Hence

As another example we may consider the group U(1), as in (1.106), where it is clear that
Myay = S !, the unit circle. For S! there are paths which wind round the circle n-times
which are homotopically distinct for different n so that homotopy classes belonging to
m1(U(1)) are labelled by integers n. Under composition it is straightforward to see that the
winding number is additive so that

m(UQ1)) = Z, (5.107)

which is an infinite discrete group in this case.

5.5.1 Covering Group

For a non simply connected Lie group G there is an associated simply connected Lie group
G, the covering group, with the same Lie algebra since G and G are identical near the
identity. Assuming 71(G) has n elements then for any g € G we associate paths p; g
where

pi,Eﬁg(S):gi(S)v gi(o)zev gl(]-):g) i:O)"‘7n_1a (5108)
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corresponding to the n homotopically distinct paths from the identity e to any g. The
elements of 71(G) can be identified with [p;c-c]. We then define G such that the group
elements are

9i=(9,[Piesg]) €G  forall geG,i=0,....,n-1, (5.109)

with a corresponding group product

91i 92; = gk, for g=g192, [Presgigs] = [Piesgi © 91Pjie—g2] (5.110)

using the path composition as in (5.103) and noting that gipje—g, defines a path from g;
to g = g1g2. For the inverse and identity elements we have, with the definitions in (5.104),

gi71 = (9717 [gilp;;ﬁe]) ) €0 = (6, [p07€—>6:|) ’ p0,6—>e = pied"e : (5111)

These definitions satisfy the group properties although associativity requires some care. GG
contains the normal subgroup given by

{ei:izo,...,n—l}zm(G), ei = (e, [Piese]) - (5.112)

Any discrete normal subgroup H of a connected Lie group G must be moreover a
subgroup of the centre Z(G), since if h € H then ghg™' € H for any g € G, by the definition
of a normal subgroup. Since we may g vary continuously over all G, if G is a connected Lie
group, and since H is discrete we must then have ghg™' = h for all ¢, which is sufficient to
ensure that h € Z(G).

The construction described above then ensures that the covering group G is simply
connected and we have therefore demonstrated that

G~Gm(G), m1(G) c Z(G). (5.113)

As an application we consider the examples of SO(3) and U(1). For SO(3) we consider
rotation matrices R(6,n) as in (3.7) but allow the rotation angle range to be extended to
0 — 27. Hence, instead of (3.8), we have

neS* 0<0<2r,  (6,n)=~(27-6,-n). (5.114)

There are two homotopically inequivalent paths linking the identity to R(6,n), 0 <8 < 7,
which may be defined, with the conventions in (5.114), by

pO,I%R(G,n)(s) = R(SH,TL) ) pl,IﬁR(G,n)(S) = R(S(2ﬂ— - 0)7 —TL) ) 0<s<1, (5115)

since p1 7, r(g,n) involves a jump between antipodal points. The construction of the covering
group then defines group elements R(6,n);, for i = 0,1. For rotations about the same axis
the group product rule then requires

R(0+9',n),~+jmod2, OS9+9’£7T,

0<0,0' <m. (5.116)
R(9+9,,n)i+]‘+1m0d2, 7739+(9’S27T,

R(Q,n)z R(G',n)j = {

150



It is straightforward to see that this is isomorphic to SU(2), by taking R(6,n)o - A(0,n),
R(0,n); - -A(0,n), and hence SO(3) ~ SU(2). For U(1) with group elements as in (1.106)
we may define

Prseo(s) =™ - 0<s<1, neZ, (5.117)

which are paths with winding number n. Writing the elements of the covering group U (1)
as gn(elg) we have the product rule

Gnan (e0F)) . 0<0+0" <27,

oo 0<6,0' <2r. 5.118
9n+n'+1(62(9+9)), 2r <0+ 0 <4, ( )

() () -

It is straightforward to see that effectively the group action is extended to all real 0,6’ so
that U(1) ~ R.

5.5.2 Projective Representations

For a non simply connected Lie group G then in general representations of the covering group
G generate projective representations of G. Suppose {D(g;)} are representation matrices
for G, where D(g1;) D(g2;) = D(gx) for gii, 924, g1 € G satisfying the group multiplication
rule in (5.110). To restrict the representation to G it is necessary to restrict to a particular
path, say ¢, since there is then a one to one correspondence g; - g € G. Then, assuming
g1i g2i = g5 for some j,

D(g1:) D(g2:) = D(g;) = D(gj9i ') D(gi) = D(ex) D(g:) (5.119)
where, by virtue of (5.112) and (5.113),
gigit =ex € Z(G) for some k. (5.120)

Since e, belongs to the centre, D(e;) must commute with D(g;) for any g; € G and so,
for an irreducible representation must, by Schur’s lemma, be proportional to the identity.
Hence, for a unitary representation,

D(ep) = %1, (5.121)

where {e% : k=0,...,n—1} form a one dimensional representation of 7 (G). Combining
(5.119) and (5.121) illustrates that {D(g;)}, for ¢ fixed, provide a projective representation
of G as in (2.151).

For SO(3) we have just ¢’ = +1. For U(1) then there are one-dimensional projective
representations given by €’®?, for any real «, where we restrict 0 < < 27 which corresponds
to a particular choice of path in the covering group. Then the multiplication rules become

. R
eza@ 6@049 _

ia(60+0") 0<0 6, <92
{e ’ ST S AT, (5.122)

o ,
e2mia eza(€+0 -2m) . 2m <O+ 0! < 47 .
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5.6 Lie Algebra and Projective Representations

The possibility of different Lie groups for the same Lie algebra, as has been just be shown,
can lead to projective representations with discrete phase factors. There are also cases when
the phase factors vary continuously which can be discussed directly using the Lie algebra.
We wish to analyse then possible solutions of the consistency conditions (2.152) modulo
trivial solutions of the form (2.153) and show how this may lead to a modified Lie algebra.

For simplicity we write the phase factors v which may appear in a projective represen-
tation of a Lie group G, as in (2.151), directly as functions on Mg x M so that, in terms
of the group parameters in (5.1), we take v(g(a),g(b)) = (a,b). The consistency condition
(2.152) is then analysed with g; - g(a), g; = g(b), gr — g(6) with 6 infinitesimal and, with
the same notation as in (5.26) and (5.28), this becomes

v(c,0) +v(a,b) =v(a,b+db) +~(b,0). (5.123)
Defining
Ya(b) = a(Za 7(b,6) " (5.124)
and with (5.27) and the definition (5.32) then (5.123) becomes
Ta(b) v(a,b) = va(c) = 7a(b) - (5.125)

This differential equation for «(a,b) has integrability conditions obtained by considering

[Ta(b)va(b)]V(a)b) = fcach(b) ’)’(a, b) (5126)

which applied to (5.125) and using T,(b) = T,(c) from (5.32) leads to a separation of the
dependence on b and ¢ so each part must be constant. This gives

To(D) (D) = Tp(b) Ya(b) = fabve(b) = hab = ~Tipa (5.127)

with hgp a constant. Applying T.(b) and antisymmetrising the indices a, b, ¢ gives, with
(5.41),

0=Tchap+Tyheo + T4 hye = fdab(Td'Yc _Tc7d) + fdbc(Td'Ya _Ta’)/d) + fdca(Td'Yb _Tb')/d) ) (5'128)

and hence, with (5.127) and (5.43), there is then a constraint on hgy,

Foabhac + e haa + feahap = 0. (5.129)

As was discussed in 2.9 there are trivial solutions of the consistency conditions which are
given by (2.153), and which, in the context of the Lie group considered here, are equivalent
to taking vy(a,b) = a(c) - a(a) — a(b) for a any function on M. From (5.26) we then have
v(b,0) = a(b+db) — a(b) — a(0) so that (5.124) gives

o ol (5.130)

a :Ta —Cq a =
W) =T a®) o, ca= g
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and then substituting in (5.127)
hap = fcab Cc. (5131)

It is easy to verify that (5.130) and (5.131) satisfy (5.127) and (5.129)**.

If there are unitary operators U(a), corresponding to g(a) € G, realising the Lie group
G as a symmetry group in quantum mechanics then (2.151) requires

Ub)U(0) = MU (b+db), (5.132)

for infinitesimal #¢. Assuming

U)=1-i6"T,, (5.133)
for hermitian operators T}, then, since U (b+db) = U(b) + 8T, (b)U(b), we have

To(b)U(b) = iU (b)(To +7a(D)) .- (5.134)

By considering [T}, T;]U(b) and using (5.127) then this requires that the hermitian opera-
tors {1} satisfy a modified Lie algebra

(70, T3] =i f Te—ihap 1. (5.135)

The additional term involving h,y, is a central extension of the Lie algebra, it is the coeflicient
of the identity operator which commutes with all elements in the Lie algebra. A central
extension, if present, is allowed by virtue of the freedom up to complex phases in quantum
mechanics and they often play a crucial role. The consistency condition (5.129) is necessary
for {T,} to satisfy the Jacobi identity, if (5.131) holds then the central extension may be
removed by the redefinition Ta - Ta +cq 1.

As shown subsequently non trivial central extensions are not present for semi-simple Lie
algebras, it necessary for there to be an abelian subalgebra. A simple example arises for
the Lie algebra is0(2), given in (4.150), which has a central extension

[J3,E1] =iEs, [J3,E2] = —iE, [E1, Ep] =icl. (5.136)

5.6.1 Galilean Group

As an illustration of the significance of central extensions we consider the Galilean Group.
Acting on space-time coordinated x,t this is defined by the transformations involving rota-
tions, translations and velocity boosts

x'= Rx+a+vt, t'=t+b, (5.137)

where R is a rotation belonging to SO(3). If we consider a limit of the Poincaré Lie algebra,
with generators J, K, P, H, by letting K — ¢K, H - ¢M + ¢ 'H and take the limit ¢ - oo

4 Alternatively, using the left invariant one forms in (5.48) and defining h = 1ha,w® A w®, then (5.129)
is equivalent, by virtue of (5.49), to dh = 0, so that h is closed, while the trivial solution (5.131) may be
identified with h = —de, corresponding to h being exact, for ¢ = c,w®. Thus projective representations depend
on the cohomology classes of closed, modulo exact, two forms on Mg.
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then the commutation relations from (4.42), (4.43) and (4.107), (4.108) become
[Ji Jj] = igiji i [, K] = ieijn Ky [Ki, K;]=0, [Ki, H] =iPF;,
[K;, Pj] =14 M, [J,M]=[K,M]=[P,M]=[H,M]=0. (5.138)

When the Lie algebra is calculated just from the transformations in (5.137) the terms
involving M are absent, the terms involving M are a central extension.

If we consider the just the subgroup formed by boosts and spatial translations then
writing the associated unitary operators as

Ulv,a] = e aP givE, (5.139)
then a straightforward calculation shows that
Ulv',a']U[v,a] = MV 2U[v' +v,a’ +a]. (5.140)

For comparison with the preceding general discussion we should take 7, — (Vv,Va) and
T, - (-K,P). From (5.140) then v, —» M(0,v) and from (5.127) he, — M( 7(}3 IS’ )-

For representations of the Galilean group in quantum mechanics the central extension
plays an essential role. Using (5.138)

e VEPN K Py My,  NEHNK=H+P v+ IMV. (5.141)

In a similar fashion to the Poincaré group we may define irreducible representations in terms
of a basis for a space V), obtained from a vector |0), such that P|0) = 0, by

Ip) = eV K|0), p=Mv, (5.142)

so that as a consequence of (5.142)

Plp)=plp),  Hlp)=(Eo+£)lp). (5.143)

Clearly Vs corresponds to states of a nonrelativistic particle of mass M. The representa-
tion can easily be extended to include spin by requiring that |0) belong to an irreducible
representation of the rotation group.

5.7 Integration over a Lie Group, Compactness

For a discrete finite group G = {g;} then an essential consequence of the group axioms is that,
for any function f on G, the sum ¥; f(g;) = ; f(ggi) is invariant for any arbitrary g € G.
This result played a vital role in the proof of results about representations such as Schur’s
lemmas and the equivalence of any representation to a unitary representation. Here we
describe how this may be extended to Lie groups where, since the group elements depend
on continuously varying parameters, the discrete sum is replaced by a correspondingly
invariant integration.
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If we consider first the simplest case of U(1), with elements as in (1.106) depending on
an angle # then a general function f on U(1) is just a periodic function of 8, f(0+27) = f(6).
Since the product rule for this abelian group is el e = 1 (0"+9) then, for periodic f,

f 0 £(0) = f 0 (0 +0) (5.144)
0 -/ . .

provides the required invariant integration over U(1). For the covering group R, formed by
real numbers under addition, the integration has to be extended to the whole real line.

For a general Lie group G then, with notation as in (5.1) and (5.2), we require an
integration measure over the associated n-dimensional manifold Mg such that

Lan® 100D = [dp®) 1(5(0) for g(e) =g@)g(®),  (5145)

where dp(b) = d"bp(b). To determine p(b) it suffices just to calculate the Jacobian J
for the change of variables b — ¢(b), with fixed a, giving for the associated change of the
n-dimensional integration volume elements

d"c=|J]d"b,  J=det [gg] : (5.146)

and then require, to satisfy (5.145),

dp(b) =dp(c) = p(b) = 1p(c). (5.147)
For a Lie group the fundamental result (5.31), with (5.30), ensures that
det [,u(c)]
J=det|A(b)| det|u(c)| = —F—=. (5.148)

Comparing (5.146) and (5.148) with (5.147) show that the invariant integration measure
over a general Lie group G is obtained by taking

¢
‘det [,u(b)“

for some convenient constant C. The normalisation of the measure is dictated by the form
near the identity since for b~ 0 then dp(b) ~ C'd"b.

dp(b) = d"b. (5.149)

A Lie group G is compact if the group volume is finite,

dep(b) - |G| < oo, (5.150)

otherwise it is non compact. By rescaling p(b) we may take |G| = 1. For a compact Lie group
many of the essential results for finite groups remain valid, in particular all representations
are equivalent to unitary representations, and correspondingly the matrices representing the
Lie algebra can be chosen as anti-hermitian or hermitian, according to convention. Amongst
matrix groups SU(n),SO(n) are compact while SU(n,m), SO(n,m), for n,m >0, are non
compact.
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5.7.1 SU(2) Example

For SU(2) with the parameterisation in (5.61) the corresponding 3 x 3 matrix [j;;(u)] was

computed in (5.63). It is not difficult to see that the eigenvalues are ug, u % ¢Ju| so that in

this case, since ug® +u® =1,

det[pji(u)] = ug . (5.151)

Hence (5.149) requires

1
dp(u) = Tl dPu,  “l<ug<l, |ul<1. (5.152)

where range of wup,u is determined in order to cover SU(2) matrices in (5.8). For the
parameterisation in terms of §,n, n? = 1, as given by (3.38)

up = oS %9, u = —sin %0 n, d3u = [u)*dju|dQ,, (5.153)

so that
dp(,n) = $sin®$0d0dQ,,  0<6O<2m. (5.154)

Since [g»dQy = 47 the group volume is easily found

dp(0,n) = 272 5.155
fSU(Q)p(,m x (5.155)

These results verify the integration measure in (3.18) for SO3), where the range of 6 is
halved.

For the parameterisation of SU(2) in terms of Euler angles ¢,6, as in (3.96) the

(0 COS%G COS%(¢+¢), u;),:—cos%H sin%(¢+zp),
u1 = sin %9 sin%(d) ), ug = sin %9 cos %(qb ). (5.156)

Using duq A dusg = —% sinfdf Ad(¢ —1) and duy A dug A dug = % sin 6 ugdf A d¢ A di) then
dp(¢,0,v) = gsinfdfdpdy, (5.157)

reproducing (3.123).

For SO(3), since SU(2) is a double cover, the group volume is halved. In terms of the
parameterisation (6,n) used in (5.154) we should take 0 < # < 7 or in terms of the Euler
angles modify (3.96) to 0 < < 27.

For compact Lie groups the orthogonality relations for representations (2.50) or charac-
ters (2.56) remain valid if the summation is replaced by invariant integration over the group
and |G| by the group volume as in (5.150). For SU(2) this corresponds to the results give
in (3.133) and (3.134).
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5.7.2 Non Compact SI(2,R) Example

As an illustration of a non compact Lie group, we consider SI(2,R) consisting of real 2 x 2
matrices with determinant 1. With the Pauli matrices in (3.19) a general real 2 x 2 matrix
may be expressed as in (3.40)

A =vg + 0101 +vyi09 + V303, (5.158)
where, for A € SI(2,R), vg, v are real and we must further impose
det A=vi> + v —v® —vf = 1. (5.159)

If we choose v = (v1,v2,v3) as independent parameters, so that we may write A(v), then
for a infinitesimal @ = (01, 62, 03) under matrix multiplication

A(v)A(0) = A(v+dv), (5.160)
where, using the multiplication rules (3.20),

Vo V3 (2p)
(dUl d’U2 d03)=(91 02 93) V3 Vo % (5.161)

—v2 —U1 Yo

This defines the matrix pu(v), as in (5.27), for SI(2,R) with the parameter choice in (5.158).
It is easy to calculate, with (5.159),

det u(v) = o, (5.162)

so that the invariant integration measure becomes

1
dp(v) = ool d3v. (5.163)

Unlike the case for SU(2) the parameters v have an infinite range so that the group volume
diverges.

For an alternative parameterisation we may take

vg = cosha cosfB, vy =coshasinf, vy =sinha cosvy, vs =sinha sinvy,
a>0, 0<pB,y<2m. (5.164)

In this case the SI(2,R) integration measure becomes
dp(a, 8,7) = %sinh 2adadfdy, (5.165)

which clearly demonstrates the diverging form of the « integration. For 3,~ = 0 the SI(2,R)
matrix given by (5.164) reduces to one for SO(1,1) as in (1.123).
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5.8 Adjoint Representation and its Corollaries

A Lie algebra g is just a vector space with also a bilinear commutator, [, ] : gxg — g, subject
only to the requirement that the commutator is antisymmetric and satisfies the Jacobi
identity. The vector space defines the representation space for the adjoint representation
which plays an absolutely fundamental role in the analysis of Lie algebras.

For any X,Y € g then
Y > [X,Y]= Xy, (5.166)

defines the linear map X1 : g — g. There is also a corresponding adjoint representation for
the associated Lie group GG. For any X € g the associated one parameter group is given by
exp(sX) € G and then the adjoint representation D! is defined by

n

Y

D (exp(sX))Y =Xy = 3 =X [xY]L, (5.167)
n=0 T | —

exp(X)

with similar notation to (5.98). To verify that (5.166) provides a representation of the Lie
algebra the Jacobi identity is essential since from
z¥xy - [7,[X,Y]], (5.168)
we obtain for the adjoint commutator, using (5.17),
(22, x*Y = [2,[X,Y]]- [X,[Z2,Y]]=[[2.X],Y]=[2,Y]Y, (5.169)

and hence in general
[z, x*] = [2,Y]™. (5.170)

Explicit adjoint representation matrices are obtained by choosing a basis for g, {T,} so
that for any X € g (5.166) becomes

(X, Ta) = T (X*)’. (5.171)
For X — T, the corresponding adjoint representation matrices are then given by
[To, T] =T (T4 = (T)% = [, (5.172)
using (5.41). The commutator
[T24, 194 = o TR, (5.173)

is directly equivalent to the Jacobi identity (5.42). The group representation matrices

D (exp X) = eXad, with X2d = T.24 X are then obtained using the matrix exponential.
Close to the identity, in accord with (5.69),

DM (expX) =T+ X+ 0(X?). (5.174)

If the Lie algebra is abelian then clearly X4 = 0 for all X so the adjoint representation
is trivial.
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For su(2) with the standard hermitian generators

[JZ’, Jj] = igijk Jk = (Jiad)jk = _ifz‘jk y (5.175)

where J3 are three 3 x 3 hermitian matrices. If n is a unit vector (n-J*)? = I —nn?

from which we may deduce that n-J?! has eigenvalues +1,0 so that this is the spin 1
representation. For the the Lie algebra iso(2), as given in (4.150), we have

00 0 00 1 0 -1 0
EM=ilo 0 -1], EM=ilo 0o o], JM=il1 0 0. (5.176)
00 0 00 0 0 0 0

5.8.1 Killing Form

The Killing® form, although apparently due to Cartan, provides a natural symmetric bi-
linear form, analogous to a metric, for the Lie algebra g. It is defined using the trace, over
the vector space g, of the adjoint representation matrices by

R(X,Y) =tr(X*Y™!)  forall X,Yeg, (5.177)
or in terms of a basis as in (5.172)
Kab = 5(Ta, Tv) = [ aa e (5.178)
so that k(X,Y) = kap X2Y?. Clearly it is symmetric Kqp = Kpq.
The importance of the Killing form arises from the crucial invariance condition
k([Z,X],Y)+r(X,[Z,Y]) =0. (5.179)
The verification of this is simple since, from (5.170),
k([Z,X],Y) = tr([Z, X]*Y?) = tr([ 22, x4 vd), (5.180)

and then (5.179) follows from tr([Z?9, X?d]Y2d) +tr(X?d [Z2dY24]) = 0, using cyclic sym-
metry of the matrix trace. The result (5.179) also shows that the Killing form is invariant
under the action of the corresponding Lie group G since

/ﬁ(eszadX, eszadY) =r(X,Y), (5.181)
which follows from (5.167) and differentiating with respect to s and then using (5.179).
Alternatively (5.179) may be expressed in terms of components using
K([Te, Ta), Th) = f%ati(Tas To) = fea b = foan » (5.182)
in a form expressing xy, as an invariant tensor for the adjoint representation

d d
Hdbf ca+’{'adf =0 ~ fcab""fcba:O' (5183)
“Wilhelm Karl Joseph Killing, 1847-1923, German.
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Since, from (5.39), feap + feba = 0 this implies

Jabe = f[abc] . (5184)

If the Lie algebra g contains an invariant subalgebra b then in an appropriate basis we
may write

To=(T;,T.), Tieh [Ti,Tj]=f5%Te, [Tn,T] = Ty, (5.185)

so that the Killing form restricted to b is just

kij = [N fr = oy (THTR) . (5.186)

The crucial property of the Killing form is the invariance condition (5.179). If g4 also
defines an invariant bilinear form on the Lie algebra, as in (5.179), so that

9a([Z,X]°Y" + X[2,Y]") =0, (5.187)

then, for any solution ); of det[kap — Agap] = 0, b; = {X; : (Kap — Migap) XP = 0} forms, by
virtue of the invariance condition (5.187), an invariant subalgebra b; c g. Restricted to b;
the Killing form k4, and g4 are proportional. For a simple Lie algebra, when there are no
invariant subalgebras, the Killing form is essentially unique.

For a compact group the adjoint representation D! may be chosen to be unitary so
that in (5.174) the adjoint Lie algebra generators are anti-hermitian, as in (5.70),

xadf - _ xad (5.188)

In this case
k(X,X) <0, (X, X)=0 < Xx*-=0. (5.189)

For su(2) using the hermitian adjoint generators in (5.175) the Killing form is positive
_ ad 7ady _ 2 _
Kij = tr(JPC T = i€ip g = 265 - (5.190)

However for iso(2) then, if T, = (E1, E2, J3), a=1,2,3, it is easy to see from (5.176)

000
[kap] =20 0 0 (5.191)
00 1

5.8.2 Conditions for Non Degenerate Killing Form

For the Killing form to play the role of a metric on the Lie algebra then it should be non-
degenerate, which requires that if x(Y,X) = 0 for all Y € g then X = 0 or more simply
det[kqp] # 0 so that KapY? = 0 has no non trivial solution. An essential theorem due to
Cartan gives the necessary and sufficient conditions for this to be true. Using the definition
of a semi-simple Lie algebra given in 5.2 we have;
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Theorem The Killing form is non-degenerate if and only if the Lie algebra is semi-simple.

To demonstrate that if the Lie algebra is not semi-simple the Killing form is degenerate
is straightforward. Assume there is an invariant abelian subalgebra b with a basis {7;} so
that A

T, = (Tinr) = [TlaTj] =0, [TmTi] :f]riTj- (5'192)

Then from (5.178)
Kai = [ ad fdic = Taj fjir =0, since frsj = Tkj =0, (5193)

which is equivalent to k(Y,X) =0 for X € h and all Y € g. The converse is less trivial.
For a Lie algebra g, if det[rs] = 0 then h = {X : (Y, X) = 0,for all Y € g} forms a non
trivial invariant subalgebra, since (Y, [Z, X]) = -k([Z,Y],X) =0, for any Z,Y € g, X €b.
Thus g is not simple. The proof that g is not semi-simple then consists in showing that b is
solvable, so that, with the definition in (5.52), (") is abelian for some n. The alternative
would require §(™ = h("*1) for some n, but this is incompatible with k(X,Y) =0 for all
XY eb.

The results (5.190) and (5.191) illustrate that su(2) is semi-simple, whereas iso(2) is
not, it contains an invariant abelian subalgebra.

For a compact Lie group G the result that a degenerate Killing form for a Lie algebra g
implies the presence of an abelian invariant subalgebra follows directly from (5.189) since
if X2 =0, X commutes with all elements in g. For the compact case the Lie algebra can
be decomposed into a semi-simple part and an abelian part so that the group has the form

G =~ Gsemi-simple ® U(1) ® --- @ U(1)/F, (5.194)

with a U(1) factor for each independent Lie algebra element with X! = 0 and where F is
some finite abelian group belonging to the centre of G.

5.8.3 Decomposition of Semi-simple Lie Algebras

If a semi-simple Lie algebra g contains an invariant subalgebra § then the adjoint represen-
tation is reducible. However it may be decomposed into a direct sum of simple Lie algebras
for each of which the adjoint representation is irreducible. To verify this let

b= {X:x(X,Y)=0,Y eh}. (5.195)

Then b, is also an invariant subalgebra since, for any X e h, and Zeg, Y e b, k([ Z, X],Y) =
-k(X,[Z,Y]) = 0. Furthermore h, nh = 0 since otherwise, by the definition of b, in (5.195),
there would be a X € b, and also X € h so that x(X,Z) =0 for all Z € g which contradicts
the Killing form being non-degenerate. Hence

g=heb,. (5.196)
This decomposition may be continued to give until there are no remaining invariant spaces
g=@gi, g simple. (5.197)

i
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For the Lie algebra there is then a basis {T,(")}, such that for each individual i this represents
a basis for g;, a = 1,...dim g;, and with the generators for g;, g;, ¢ # j commuting as in (5.53)
and k(T T,\9)) =0, i # j. For any X,Y € g then the Killing form becomes a sum

X=X, Y=Y, &(X)Y)=) trg,(X), (5.198)

The corresponding decomposition for the associated Lie group becomes G = ®;G;.

With this decomposition the study of semi-simple Lie algebras is then reduced to just
simple Lie algebras.

5.8.4 Casimir Operators and Central Extensions

For semi-simple Lie algebras we may easily construct a quadratic Casimir operator for any
representation and also show that there are no non trivial central extensions.

The restriction to semi-simple Lie algebras, det[rqp] # 0, ensures that the Killing form
K = [Kap] has an inverse k™! = [k%], so that ke k% = 0, and we may then use £® and kg to
raise and lower Lie algebra indices, just as with a metric. The invariance condition (5.183)
becomes kT2 + T,247 k = 0 so that from [T,24, k7'k] = 0 we obtain T,2% ™ + k717,247 =
or

fbad Hdc + fcad ﬁbd =0, (5199)

showing that k% is also an invariant tensor. Hence, for any representation of the Lie algebra
in terms of {¢,} satisfying (5.60), then

[ta, " tyte] = K2 f L tate + flctvta) = (K Fhp + 6% fc) tate = 0. (5.200)
In consequence £ t,ty is a quadratic Casimir operator.

To discuss central extensions we rewrite the fundamental consistency condition (5.129)
in the form
hae fecd = —hge feac = hee feda . (5201)
Then using (5.199)
hae fecd fcbg /igd = _hae fgcd fcbg Ede = hae Kdb Hed = hab 5 (5202)
and also, with (5.199) again,
(hde Sac + Pee feda)fcbg k9% = (hde [ac fcbg + hec fcbg fead)ﬁgd
= hde feac fcbg K'gd - hec fcbg gad /{de (5203)
we may obtain from (5.201), re-expressing (5.203) as a matrix trace,

hap = _tr(h [Taad7 Tbad]ﬁil) = _tr(thadﬁil)fcab . (5'204)

Hence hgy, is of the form given in (5.131) which demonstrates that for sem-simple Lie algebras
there are no non trivial central extensions. Central extensions therefore arise only when are
invariant abelian subalgebras.
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6 Lie Algebras for Matrix Groups

Here we obtain the Lie algebras g corresponding to the various continuous matrix groups
G described in section 1.6 by considering matrices close to the identity

M=1+X+0(X?), (6.1)

with suitable conditions on X depending on the particular group.

6.1 Unitary Groups

For u(n), X is a complex n x n matrix satisfying X7 = =X and for su(n), also tr(X) = 0.
It is convenient to consider first a basis formed by the n?, n x n, matrices { R’ j}, where R';
has 1 in the ¢’th row and j’th column and is otherwise zero,

J
00 ... 0 ... 0
Ry [0 O st (R =R (62)
0 0
00 0 0
These matrices satisfy ' , ,
[R';,R¥] = 6" R - 6" R";, (6.3)

and ‘ ‘
tI‘(sz Rkl) = (5kj 0. (64)

In general X = R'; X7, € gl(n) for arbitrary X]l so that {R';} form a basis for gl(n). If
> X7; =0 then X esl(n) while if (X7;)* = -X"*; then X = ~-XTeu(n). For the associated

adjoint matrices
[X,R'j]=X"W RE - Ry Xy = (X)) 7= X700 - X567 (6.5)
Hence, for X = R'; X7, Y = R';Y7,;,
K(X,Y) = tr( XY ) = 2(n Y, ; X9, Y7 - £, X7 2,795 (6.6)
Restricting to u(n)
K(X,X) =-2nY, ;| X7, X, = X9 - Lo, v xF (6.7)

Clearly k(X, X) =0 for X o< I reflecting that u(n) contains an invariant abelian subalgebra.
For su(n), when ¥, X*; = 0 and hence tr(X) =0, then (X, X) = 2ntr(X?) <0.

A basis of n? — 1 anti-hermitian generators for su(n), forming the fundamental repre-
sentation of this Lie algrebra, is provided by taking

{ta} ={i(R; + R);),(R'; - R?;): 1<i<j<n}u{i(R-R"u);1<i<n-1}.  (6.8)
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These satisfy

tr(te) =0, tr(taty) = 20w, tota=-L1,  [te, 6] = foabte, (6.9)

n

and the completeness condition
X =t,X, X, = %tr(taX) for any X €su(n). (6.10)

Since

.
Sotr(tay .- [testa,]---ta,) =0, (6.11)
=1

then tr(tq,tq, - . - ta, ) is an invariant tensor for su(n) in the basis provided by {t,}. Invariant
tensors can be chosen to be totally symmetric since otherwise the commutation relations
(6.9) allow the trace over r generators to be reduced to a sum over traces with ' <r. A
potential basis for invariant tensors is then provided by

tr(tartay---tay)s T=2,...m, (6.12)

since for an n x n matrix A, tr(A") for r > n is reducible to products of traces tr(A™) with
m < n. The invariant tensors are not unique since any symmetric rank r invariant tensor
dr.a,...q, i invariant up symmetrised products of lower rank r; tensors with Y r; = r.

Any representation of the su(n) Lie algebra has a basis {T,} where [Ty, Tp] = [ ap Te
and then for invariant tensors d; 4, ...,

Cr=dray.a,Ta, ... To, satisfies [T,,C]=0, (6.13)
and so C, is a Casimir operator. For su(n) there are thus n—1 Casimirs. For an irreducible

representation C, = ¢, 1.

6.2 Symplectic Groups

For sp(2n,R) or sp(2n,C) the condition (1.107) translates into
JX =-XTJg=(x)T, (6.14)
where J is the standard antisymmetric matrix given in (1.108). It can be represented by
Jij==Jji==(=1)"0yr, ' =j-(-1). (6.15)
It is convenient to define also
J9=—git. g =6, (6.16)

where J;;, Ji; can be used to raise and lower indices. A basis for sp(2n,R), or sp(2n,C),
satisfying (6.14) is provided in terms of the 2n x 2n matrices {T";}

(Tij)kl =(5il(5kj+Jik le, JTij = (JTij)T. (6.17)
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With the choice (6.15) these have the explicit form

-/

i J
0 ... 0 . 0 .0
- ifo 0 1 0
T'j= |: P 1<i<j<2n. (6.18)
i'lo —(-1)™ 0 0
0 ... 0 . 0 .00

A linearly independent basis is given by {Tij, 1<i<j<onmT? Yy, Ty 1, 1<i<n}.
For n =1 this prescription gives

1 _ 2 (10 1 (0 2 2 (00
Tl-Tg-(O S Tl o) ThEly o) (6.19)
From (6.17) ' ‘
T = Jh I, T, (6.20)
and the matrices {T7;} satisfy the Lie algebra
(7%, 7% ] = 6" T%; - 6%, %) - J* T T™ 4 T T, (6.21)
and also ' ' 4
t[‘(le Tkl) = 2(511 (5kj + JZk le) . (622)

For any X € sp(2n,R), or sp(2n,C) then X = %inTij. As a consequence of the symmetry
of Tij X7, should be restricted so that X7; = J7'.J;, X*,. Using (6.21)

[X,T%] = X*5 T - X' T, (6.23)
so that from (5.171) [X,T%;] = L T'(X*4)k 7 giving
(XAyR = 60 xR - 6% X TR g, X - gy TEX (6.24)
and hence ' ' o
K(X,Y) = i(Xad)kl,Zj (Yad)Ji,lk =(n+2) XY, (6.25)
An alternative basis for the Lie algebra is obtained by taking T;; = Jix Tkj = Tj; with
tr(Tij Thr) = —2(JaJjk + JirJj1) and the Lie algebra becoming
(T35, Tt = Jix Tjt + Ju Tjr, + Jjn T + Tt Tige (6.26)

The generators here correspond to symmetric 2n dimensional matrices so the dimension is
clearly §2n(2n+1).

For the corresponding compact group Sp(n) = Sp(2n,C) n SU(2n) we impose, as well
as (6.14), ‘ '
XT=-X o XIF=-X',. (6.27)
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Then (6.25) gives
R(X,X) = —(n+2) X X7 (6.28)

From (6.14
o1 JXJ Tt =-xT, (6.29)

so that, following the discussion in section 5.3.3, the fundamental representation of compact
Sp(n) is pseudo-real.

In the alternative basis in (6.26) a general X € sp(2n,C) can be expressed as X = % XUT;;
with X% symmetric and (6.27) becomes

Xif = J* I Xy (6.30)

6.3 Orthogonal and Spin Groups

For o(n) or so(n) then in (6.1) we must require X7 = —X so that tr(X) = 0. A basis for
n x n antisymmetric matrices is given by the %n(n — 1) matrices {Sj; :i < j} where

i J
O ... 0 ... 0 ...0
110 0 1 0
Sij=—-Sji = : o, 1+7=1,....n. (6.31)
710 -1 0 0
0 0 ... 0 0
These satisfy
[Sijs Ski] = 6k Sit = ik Sj1 = 551 Sik + St S » (6.32)
and
tl"(Sij Skl) = 2(6il 5jk - 0k 5jl) . (6.33)

For arbitrary X € so(2n) then X = %XijSij, where X;; = -Xj; is real. From (6.32)
[X,85] = Xui Skj = X Ski = Xitss = Xui 015 — Xj 015 — X1 O + Xij 0pi . (6.34)

and hence
K(X,Y) = ixg;{ij ng}d =(n-2) Xi;Yji. (6.35)

The matrices (6.31) are the generators for the vector representation of SO(n) which is of
course real, as described later there are also complex representations involving spinors.

6.3.1 Spin Groups and Gamma Matrices

The relation SO(3) and SU(2), which is described in section 3.2, and also the introduction
of spinorial representations, described in section 3.14, may be extended to higher orthogonal
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groups. In the discussion for SO(3) and SU(2) an essential role was played by the Pauli
matrices. For SO(n) we introduce similarly gamma matrices, v;, 7 = 1,...,n which form
the basis for a Clifford algebra the Clifford*® algebra,

Yy =201, A = (6.36)

The algebra may be extended to pseudo-orthogonal groups such as the Lorentz group, which
involve a metric g;; as in (1.124), by taking é;; — g;; on the right hand side of (6.36). To
obtain explicit gamma matrices for SO(n,m) it is sufficient for each j with g;; = -1 just to
let ~; — i7; for the corresponding SO(n+m) gamma matrices. For the non compact group
the gamma matrices are not all hermitian. (For g;; as in (1.124) then if A =~ ...7, then

Ay A™h = —(=1)")

The representations of the Clifford algebra (6.36), acting on a representation space S,
are irreducible if S has no invariant subspaces under the action of arbitrary products of
~;’s. As will become apparent there is essentially one irreducible representation for even n
and two, related by a change of sign, for odd n. If {7}, like {7;}, are matrices forming an
irreducible representation of (6.36) then v = Ay;A™Y, or possibly v; = —Av;A~! for n odd,
for some A. As a consequence of (6.36)

(y-z)?=2*1, zeR". (6.37)

This the primary definition of a Clifford algebra where there a product for two vectors
belonging to a vector space V' which is proportional to the unit operator on V.

To show the connection with SO(n) we first define

sij = 3V = ~Sij - (6.38)

Using just (6.36) it is easy to obtain

[sijs vkl = 05k = 0k ;s (6.39)
and hence
[si, Skl] = 0jk Sit = Oik Sjt = 01 Sik + 0it Sk - (6.40)

This is identical with (6.32), the Lie algebra so(n). Moreover for finite transformations,
which involve the matrix exponential of %wijsij, wij = ~Wji,
1

e 2wt~y e3 wirsi vea', 2'=Rxr, R= e 2w ¢ SO(n), (6.41)

with S;; € s0(n) as in (6.31). It is easy to see that 2’2 = 2%, as required for rotations, as a
consequence of (6.37). To show the converse we note that v = v;Rj; also satisfies (6.36)

for [Rj;] € O(n) so that v; = A(R)v;A(R)™! where A(R) = e 3%i% for R continuously
connected to the identity.

The exponentials of the spin matrices form the group

Spin(n) = {e_%w”s"j tWij = —Wj € ]R}. (6.42)

4eWilliam Kingdon Clifford, 1845-1879, English, second wrangler 1867.
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Clearly Spin(n) and SO(n) have the same Lie algebra. For n = 3 we may let v; - 0; and
sij = %igijkak so that Spin(3) ~ SU(2). In general, since +1 € Spin(n) are mapped to
1€ SO(n), we have SO(n) ~ Spin(n)/Zs.

Unlike SO(n), Spin(n) is simply connected and is the covering group for SO(n). For
further analysis we define

1 _
T =372 = (=12 T =y gy, (6.43)

so that )

r2=(-1)2""q, (6.44)
Directly from (6.36)

[[,7%]=0, nodd, T+ =0, neven, i=1,...n. (6.45)
Using, similarly to (3.38),
e** = cossal +sinJa2s;;, (6.46)
then
e Lit1S2i-12i _ I, e T Xit152i-12i (-n)™"r, for n=2m even. (6.47)

This allows the identification of the centres of the spin groups

Lo x 7. =4
Z(Spin(n))={ﬂ,—1,r,—r}:{ 2xZy, n=dm,

Z(Spin(n)) ={1,-1} ~ Zs, n=2m+1. (6.48)

Ly , n=4m+2,

Spinors for general rotational groups are defined as belonging to the fundamental rep-
resentation space S for Spin(n), so they form projective representations, up to a sign, of

SO(n).

6.3.2 Products and Traces of Gamma Matrices

For products of gamma matrices if the same gamma matrix ; appears twice in the product
then, since it anti-commutes with all other gamma matrices, as a consequence of (6.36),
and also 7?2 = 1, it may be removed from the product, leaving the remaining matrices
unchanged apart from a possible change of sign. Linearly independent matrices are obtained
by considering products of different gamma matrices. Accordingly we define, for i1, .. .14,
all different indices,

10
Liy.ip = iy - Vir] = (-1) 2r(r1) Fi1---irT ) Fil---irT =L i r=1,...n, (6.49)
where T;, ;2 = (—1)%7"(7"71) 1 and with the usual summation convention

LT, Doy = () 1. (6.50)

r
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From the definition (6.43)
Fllln :51-1“%1“, n = 1,2,... . (651)
We also have the relations

1 _ 1 _
Ty iy = (1) gy s T D, res=n. (6.52)

A basis for these products of y-matrices is given by C, = {T';, ;, : 1< i3 <ig<---<ip <n},
with dimC, = (:), Cn = {T'}. Tt is easy to see that C™ = {+1,+C;,...,+Cp,_1, %'} is closed
under multiplication and therefore forms a finite matrix group, with dimC(™ = 2 Yo (:) =
27+l The matrices {1,Ci,...,C,} may also be regarded as the basis vectors for a 2"-

dimensional vector space which is also a group under multiplication, and so this forms a

field.

When n is odd then from (6.45) I' commutes with all elements in C™ and so for an
irreducible representation we must have I' < 1. Taking into account (6.44)

+l, n=4m+1
F:{ (6.53)

+i1, n=4m+3

The =+ signs correspond to inequivalent representations, linked by taking «; - —~;. For a lin-
early independent basis then, as a consequence of (6.52), it is necessary to recognise that the
products of gamma matrices are no longer independent if r > %n The matrix groups formed

from the irreducible representations for n odd are then, for the two cases in (6.53), C(*™*1) =
{£1,£Cy,...,+Cop}, dim CA™H) = 24m+1 and ¢(4m+3) = (11 441, £Cy, +iCy, ..., i Come1 },
dim C(4m+3) = 94m+4 " Thys for n = 3 there is the Pauli group of order 16 formed from the
2 x 2 matrices {+1s, +ily, +0y, +io; }, with o; the usual Pauli matrices or Qg Ui Qg. This
group corresponds to Qg x Z4/Zo with Zy = {1, +i} and Zg = {£1}. The Pauli group has a
D, subgroup formed by {19, +01, +09, +i03}.

For n even C(™ does not contain any elements commuting with all 4; but
[F, Sij] =0. (6.54)

Hence we may decompose the representation space S = S, & S_, such that 'S, = S, and,
since ; anti-commutes with ', v; Sy = S;. Hence there is a corresponding decomposition
of the gamma matrices with I" diagonal and where, using (6.44),

10 =4 . ..
F:{(Oﬂ)’ n m, fyz:(o 0(—]7')7 Sij:(s-g] 0 ) (655)

2(6_01), n=4m+2, o S—ij
Clearly ; = o;' and S1ij = %a[i 0] S—ij = %6[i ;] and just as in (6.38) we have
Ssifl = —84ij - (6.56)
With the decomposition in (6.55) the Clifford algebra (6.36) is equivalent to

O'ia'j+0'ja'i:25ij]17 6iaj+6ja,-:25ij]l. (657)
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For traces of gamma matrices and their products we first note that from (6.36)

tr(v; (v + 1)) = 2tr(y9%) = 2tr(y;) =0,  j#4i, nosumon j. (6.58)

We may similarly use ~; Iy, ;. +I.4.7 = 0, when r is odd and for j # i1,...,%,, or
Vi Ljig.ip + Uiy i,75 =0, when 7 is even and with no sum on j, to show that

tr(Ly, .4,.) =0, except when r =n, n odd. (6.59)
Hence in general, for r,s =0,...,n for n even, or with r, s < %n for n odd,
tr(Tiyiy Djeogy ) = Ors dn (Ar)iy iy v (6.60)
where
dp, =tr(1),
1, (j1,...,7r) an even/odd
(Ar)iyiviyoge =7 S(irja Oialjol - - - Oirlj = permutation of (i,...,%,) | (6.61)

0, otherwise

so that A, /r! is a projection operator for antisymmetric rank r tensors.

With d,,-dimensional spinorial indices «, 3,... the I'-matrices can be represented dia-
grammatically
B o
> r=0 < r=20
B ¢ 3 o
(Filmir)a = B8 ) (Fir...il)a = a s (662)
>=)<T r>1 T,=)=< r>1
« B

WithO =dp, {})z =0. (6.60) is then equivalent to

T#Q*S =dpors =p=> (663)

The identity (6.50) corresponds to

@ _ (:}) N (6.64)

These matrices then have a norm

Lte(Diy i, Tiyiy) = @ = d, (:L) (6.65)
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In general these products of gamma matrices form a complete set so that

dn 5046576 = 5016576 + Z % (Fh...ir)o/g (Fzru )'yd 5

r>1
B Y B v B Y
~ 6.66
dy, = + Zrzl 7 ( : )
amd a é « J
withr=1,...,n,d, = 23" for n even, and r=1,..., %(n— 1), d, = 25(=1) for n odd.

6.3.3 Construction of Representations of the Clifford Algebra

For n = 2m an easy way to construct the y-matrices satisfying the Clifford algebra (6.36)
explicitly is to define

ar = 3(Yor-1 +iv2r) , a, = 2 (Yor-1 —iv2r) s r=1,...,m. (6.67)
Then (6.36) becomes

aras+aga, =0, arag +asa, =651, (6.68)

which is just the algebra for m fermionic creation and annihilation operators, the femionic
analogue of the usual bosonic harmonic oscillator operators. The construction of the es-
sentially unique representation space S for such operators is standard, there is a vacuum
state annihilated by all the a,’s and all other states in the space are obtained by acting on
the vacuum state with linear combinations of products of a,/’s. In general, since a,/2 =0, a
basis is formed by restricting to products of the form [T, (a,ff)ST with s, = 0,1 for each r.
There are then 2" independent basis vectors, giving dim.S = 2™. For m = 1 then we may
take, with the ‘vacuum state’ represented by ((1]),

azor=(83), al=o-=(98),  mm=ios=i(§9). (6.69)
The general case is obtained using tensor products

4,=1®®1®0,® 030 ® 03, =18 ®1®0.®03®--®03. (6.70)
~— —_— e —
r-1 m—r r-1 m—r

The o3’s appearing in the tensor products follow from the requirement that a,,as, and
a,ad, anti-commute for r = s. With (6.70) y2r-172r =11l ®---®1Q®03®1---®1 so that

FZimU3®Ug®"-®03. (6.71)

m

These results are equivalent to defining the gamma matrices for increasing n, where
'yi(”)vj(”) + 'yj(”)'yi(”) =20;; 1(m), recursively in terms of the Pauli matrices by

Vi(2m+2) _ ’Yi(2m) ® o3, 1=1,...,2m,
R T PP L TP
r@m=2) =i pem g gy (6.72)
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Note that we may take v = ¢;, i = 1,2 with I'® = jg5. For odd n the gamma matrices
may be defined in terms of those for n — 1 by

+1
ryl-(2m+1) = 'yi(Qm) , 1=1,...,2m, ’72(3,;?1—1) =Cm rm y Cm = . ) even (6.73)
+i, m odd,

where the + signs correspond to inequivalent representations. Thus v{%) = (01,02, F03).

6.3.4 Conjugation Matrix for Gamma Matrices

It is easy to see that ;! also obeys the Clifford algebra in (6.36) so that for an irreducible
representation we must have

CyCt=—ni = CTC™! = (-1)2" DT
or CyCl=nf = CTC™! = (-1)2"( DT (6.74)

When n is even then, by taking C' - CT', the two cases are equivalent. When n is odd, and
we require (6.53), then for n = 4m + 1, C' must satisfy Cy; C~! = 4L, for n = 4m + 3, then
Cv; C™t = =y In either case for the spin matrices in (6.38)

Csij C7' = sy, (6.75)
so that for the matrices defining Spin(n)
e3wisi O (¢39sin) = O, (6.76)
With the recursive construction of the gamma matrices 'yi(") in (6.72) we may also
construct in a similar fashion C(") iteratively since, using (5.77),

C) o () ) -1 _ () T
= D -0 gigy ensures CH A o) -1 _ () T (6.77)

and, using 10,071 = criT, 1=1,2, 010301 = —0'3T,
o) %.(n) o -1 _ _%.(n) T

- C(n+2) _ C(n) ® 0; ensures C(n+2) ,Yi(n+2) C(n+2) -1 _ ,yi(n+2) T ) (678)

Starting from n = 0, or n = 2, this construction gives (note that (X ® V)T = X7 @ Y1),

CrC =T, crot=r7, c=cT, n =8k,

Crv,C = -7, crct=-rT, c=-C"T, n=8k+2,
CrviCl=n~T, crot=rT, c=-c7, n=8k+4,
CrvCl= -7, crct=-rT, c=ct, n=8k+6. (6.79)
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In each case we have Cs;;C~! = —s;;7. Starting from (6.79) and with the construction in
(6.73) for odd n,

CrCl=nT, c=cT, n=8k+1,
CrviCt= -7, Cc=-CT, n=8k+3,
CrC ' =T, c=-c7, n=8k+5,
CriCl= -7, c=0T, n=8k+7. (6.80)

The definition of C for n = 2m + 1 remains the same as in (6.79) for n = 2m since in each n
odd case we have Cy172 ... 7%.C = (M2 .. 7m) 7.

If we consider a basis in which I is diagonal, as in (6.55), then for n = 8%k,8k+4 [C,T'] = 0,
so that C is block diagonal, while for n = 8k + 2,8k +6 CT' + I'C = 0, so that we may take
C to have a block off diagonal form. By considering the freedom under C' - STCS with
SI'S™1 =T we may choose with the basis in (6.55),

1 0 _

¢= 0 ]1)’ 7i=or, Syij= —ssij »  n=8k,
1

C= _O]l 0) ) O'i:O'iT, 0; =5iT, Siij = _Sﬁ'jTa n:8k;+2’

J 0 T T T
C = o Jl° J==J , JO'Z‘:—(,]O'Z‘) , Jsd:ij:(c]siij) , n:8k+4,

0 1 . . .
C: 1 0 ’ 0;= —03 , 0; =—05 , Sj:i_j = _5=Fij B n:8k+6. (681)

Here the antisymmetric matrix J can be taken to be of the standard form as in (1.108).
For n = 8k the matrices are real.

Since the generators of the two fundamental spinor representations satisfy (6.56) then as
a consequence of the discussion in section 5.3.3 we have for these representations of Spin(n),
for n even, from (6.81)

Spin(8k) : real, Spin(8k +4) : pseudo-real
Spin(8k +2), Spin(8k +6) : complex. (6.82)

Furthermore for n odd the single spinor representation, from (6.80), satisfies

Spin(8k + 1), Spin(8k + 7) : real, Spin(8k + 3), Spin(8k + 5) : pseudo-real. (6.83)

6.3.5 Special Cases

When n = 2 we may take
O—i:(lv_i)a 5—2':(17'5.), (684)

while for n =4 we may express 0;,5; in terms of unit quaternions

O-i:(lv_i)_jv_k)7 612(177’7.75k) (685)
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For low n results for y-matrices may be used to identify Spin(n) with other groups.
Thus

Spin(3) ~ SU(2), Spin(4) ~ SU(2) x SU(2),
Spin(5) ~ Sp(2), Spin(6) ~ SU(4) . (6.86)

For n = 3 it is evident directly that e T WIS ¢ SU(2). For n =4 as a consequence of (6.52),
with the decomposition in (6.55), we have

1
S+ij = £5 Eijkl Stk 5 (6.87)

Ll Lo L . . -
so that e™2“id%i = ¢72 W+ijs+ij @ 72 “-4%-ij factorises a 4 x4 Spin(4) matrix into a product of

two independent SU(2) matrices as w.;; = %wij + % €ijkl Wi are independent. For n =5 then

the 4 x 4 matrix e 2 ¥ ¢ SU(4) nSp(4,C), using (6.76) with CT = —C. In this case there
are 10 independent s;; which matches with the dimension of the compact Sp(2). For n =6,

e 2@rii*+ii e SU(4) with the 15 independent 4 x 4 matrices s.;; matching the dimension
of SU(4). Note also that, from (6.48), Z(Spin(6)) ~ Z4 ~ Z(SU(4)). Using (6.81) with
(6.55), the transformation (6.41) can be rewritten just in terms of the SU(4) matrix

g lgg T
e 2Wisii g g (e 2%i) =gl (6.88)

2 2

which is analogous to (3.27). The result that the transformation = — 2’ satisfies z* = 2’
also follows in a similar fashion to (3.29), but in this case using the Pfaffian (1.109) instead

of the determinant since we require Pf(o - 2) = 2% (from o -2 & -2 = 22 I then, with n = 6,
det(o - ) = (22)?).

6.3.6 Fierz Identities

Fier?'" identities which depend on the completeness properties of y-matrices play a crucial
role in many calculations. To derive Fierz identities it is convenient to map the y-matrices
to operator fermi fields ; so that

Vi = i, {thi, P;} =201, (6.89)

with ¢ a m-dimensional index and where v; is decomposed into fermionic creation and
annihilation operators

Qﬁi = bi + b;r s {bi, bj} = 0, {bi, bjT} = (Sij 1. (6.90)

Then from (6.49)
Fil...ir - wh R ¢ir B (691)
where : --- : denotes normal ordering, where annihilation operators are moved to the right

of creation operators taking into account anticommutation signs as required but dropping
non zero terms from (6.90), thus : ¢;1); : = 0 while ¥;1); = n 1.

4"Markus Fierz, 1912-2006, Swiss. A student of and assistant to Pauli.
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The normal ordered products are conveniently represented in terms of a generating
function

eeiwi = Z;.ZO%HZ& 911 Ilﬁil 1&15 L= Z;io%(_l)s :’(ZJZ'S 12}“ : 9@1...91‘5, (692)

where {0;} are arbitrary Grassmannian, or anticommuting, variables. These ensure that

only antisymmetrised products of 1@ arise in the expansion and therefore the products are

normal ordered. For n an integer the number of terms in the expansion is finite since
@Z) 1/)15 : =0 for s >n. As an application we may use

60“’7)" eéﬂﬁj - 6(9+9~)i1[1ieéj9j , (6.93)
and expanding to O(07,0°) gives

éjs éjleir...eilIT,ZAJl'l...’l,ZA)Z'TH?&jl.‘.’(ZJjSZ
Z:rmn(r 8)% éjs—t .. 'éjlékt . e éklekl “ae ektair—t . .01'1 :1&;1 .. 'qv;ir—t 1[}j1 . 'qﬁjs—t ..

(6.94)
This implies
Uiy i U
min(r,s r! s! 2s—t-1
= 2 O et (DTN e (A i i (6:95)

where (As)j, .. jo,ir...i, 18 defined in (6.61) and acts as the §-function for antisymmetric rank
s tensors so that é(AS)jLujs,ilnisell c.0;, =05 ...0;,. In (6.95) the i-indices and j-indices
are separately antisymmetrised.

In a similar fashion starting from 91 035 Pk e may obtain

Ok Ok O -+ Oy G - b 0(Tin iy T Doy k) =l 2y (9060)"(9565)" (Ok0r)°
a=3(s+t-r), b=i(t+r-s), c=3(r+s-t). (6.96)

This is non zero for |r —s| <t <r+s, r+ s+t even and implies

tr(Filmir Fjl -Js Fkl ki)
:dn (a?;'bsl|ct")2 ( ]')Sb (A ) kt kb+17 Js---Jetl (Ab)kb kl ’Lr Aesl (A )Jc ]1 Jic.. 'Ll] : (697)

Fierz identities are obtained by considering

2 7 b Bibi i 0o L0 P Y P [
€ua /8¢la¢l €¢J'¢'J e ¥ 6¢kwk|¢:q~§:0 = Zrz(] % UT : ’(ﬁjr ... w]l e ¥ : %1 .. w],r :
_Zs Osl 9%‘ 'Hil Z?;O%ur(_l)rs :wjr"'qzjjl::wil"‘wis::wjl"‘wjr:7 (698)

where {¢;, qgj} are further independent Grassmannian variables and a%lgbj + gf)ja%l = 5f.
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This can be evaluated using*®

cu 0001061 (b Hibi ,Pr ‘¢:¢;:0 = o001 by +d; (1 +20;)~0;b; loedco it
= (L+u)etns O o 3o (L) (1=u)* ;... 0 by, . (6.99)
Thus
% :Tﬁjr‘-'%l : :zﬁil...lﬂis : :ﬂjl...lﬂjr HES :1@’1...1[11'5 , os=1,2,...,
TRL IR EE NS oS (6.100)
for

Qs = (_1)rs L4 (1 +u)n—5(1 - u)s‘

r! dur
= (-0 Em T (0t (5
=(-1)" (";S) F(-r,-s;n-r—-s+1;-1)
= (-1 (7) F(-r,—s-n;2), (6.101)

where F' is a hypergeometric function and the last line follows by the ralation between
hypergeometric functions with argument x and 1 — z. For integer n it is necessary that
r,s < n. Manifestly r!(n—7)!Q,s = s!(n—s)! Q- and, using the properties of hypergeometric
functions, €, = (—1)r("_1)an,s = (—1)5("_1)Qn,rs. In general Q.9 = (}), Qos = 1, Q15 =
(-1)*(n -2s) and also

u=0

_ 2+u)"%(-u)® s even
¥ Qs = exp ((-1)° L) (1+ )" (1 - w)’| 0= ( )" () ‘U=0’
u= u" (2 - u)s‘u:0 , s odd
AL s=0, s=n, n odd (6.102)
0, otherwise .
As particular cases for even n
11 150 54
Qf=(2 0—2) Qlea=16 0-2 0 6
In=2 1-1 1/ =4 4 2 0-2-4])"°
1-11-11
1 11111 1
387038
Qlnee =120 0-4 0 2 0-20 6.103
In=6 5-5-1 3-1-5 15 |’ ( )
6 4 2 0-2-4 -6
1 -1 1-11-11

“®When the derivatives act on a normal ordered function of 1/; then, in a similar fashion to the discussion
in 3.15.1, the operator anticommutation relations are irrelevant and for evaluation we can let 1/3 — 1), an
ordinary Grassmann variable. The necessary identity may then be obtained, for b, o, 1;, 1) n dimensional
Grassmann variables and U, V' n x n matrices, by using

. o ' ' ' L
008U 006 ~6V & e¢w+w¢|¢:¢;:0 _ PIODV O[ow U _ 0/0%V 8)0% gt 17 f Ay eV e

-1 L -
=dethd"nd”ﬁ e +V)n+n¢+wn:det(1+UV)ew(1+UV) U¢7

where the crucial step is to express e ¥ in terms of an integral over Grassmann variables n, N and with the

conventions here "N s an eigenvector for /8y, d/8y with eigenvalues —7, 7. In application to (6.99)
b=+, =1, Y —>-20and U »ul,V -1 sothat 1 -2(1+UV)'U - 1=

1+u”
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and for n odd (6.101) gives

1 1 1 1 1 1
3143 0755575 1
Q|n3—(3 -1-1 3)» Q|n:5: 10 2-2-2 2 10| (6-104)
1111 5-31 1-3 5
1 1111 1

By virtue of (6.91), (6.100) is equivalent to the y-matrix identity

]r -J1 Z1 s ]1 JT_QTSFH s

(6.105)
% ) Qrs >*
from which it follows that
= d, Qy =>— Q. (") -
? < >C ’ @ () (6.106)

Clearly it is necessary that Qrs ) is symmetric under r <> s which is evident from (6.101).

With the completeness relation (6.66) this implies a crossing relation as in (3.194)
) 0
% (Fjr--~j1)06 (Fj1~~-jr)’yﬁ = i 520 s % (Fis-..h)aﬂ Ty, )'y )

g (6.107)

These relations are what is usually referred to as the Fierz identity. For consistency it is

necessary that
ZtZO Qg Qs = dn2 Ops, oOr Q° = dn2 T, (6108)

which requires, except when n is an odd integer,

dy =227 (6.109)

As a check we may use the first line of (6.101) to obtain via a Taylor expansion
Y02 Qs = (1+(-1)%2)" (1= (-1)*z)°, (6.110)

and then use this in (6.108) to obtain

T

S50 Qe s = & dduT(l +u+ (1) (1-w) T (1ru- ()™ (1-w)

1nu r+Ss even 1) r+S even
=Tl'2 d(;br ‘u 0’ _on J0rs> (6.111)
: —u" S| r+s odd 1 r+s=nodd.
du u=0" ?
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For n=2m+1 odd {1,I, ;, :1<r <m} form an independent basis and we have, as a
consequence of the symmetry properties of €2,
Q  Qc
:(CQ CQC) ) Crs:5r+s,m+17 C2=]l, (6112)

where 0, C are (m+1)x(m+1) matrices, C is anti-diagonal. Clearly in this case from (6.104)
det Q = 0. The result (6.111) for n = 2m + 1 requires Q2 = 2 ( gjc ccs”?;c) = 22m+l (% %) and is
then satisfied for X

Q=22 1,00y . (6.113)

Hence in (6.105) and (6.107) we may restrict 0 < r,s < m and take € — O, d, - 2m.
For n = 3,5 the 2 x 2, 3 x 3 reduced matrices forming {2 in these cases are given by the
corresponding top left hand sub matrices in (6.104). For n=7, m =3

A 7ok
Qlp=7 = (21 91 :3) . (6.114)
35-5-5 3

In general €, is a polynomial in n of degree r and the result (6.101) with (6.109)
may be extended to any complex n. In this case {1,I;, ;, :7r =1,2,...} span an infinite
dimensional space although the norm in (6.65) is no longer positive definite when r > n.
There is an infinite sum in (6.108) which is convergent for Ren > r+s and may then defined
by analytic continuation in n.
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7 SU(3) and its Representations

SU(3) is an obvious generalisation of SU(2) although that was not the perception in the
1950’s when many physicists were searching for a higher symmetry group, beyond SU(2) and
isospin, to accommodate and classify the increasing numbers of resonances found in particle
accelerators with beams of a few GeV. Although the discovery of the relevance of SU(3)
as a hadronic symmetry group was a crucial breakthrough, leading to the realisation that
quarks are the fundamental constituents of hadrons, it now appears that SU(3) symmetry
is just an almost accidental consequence of the fact that the three lightest quarks have a
mass which is significantly less than the typical hadronic mass scale.

Understanding SU(2) and its representations is an essential first step before discussing
general simple Lie groups. Extending to SU(3) introduces many of the techniques which
are needed for the general case in a situation where the algebra is still basically simple and
undue mathematical sophistication is not required. For general SU(N) the Lie algebra is
given, for the associated chosen basis, by (6.3) where, since the corresponding matrices in
(6.2) are not anti-hermitian, we are regarding the Lie algebra as a complex vector space.
To set the scene for SU(3) we reconsider first SU(2).

7.1 Recap of su(2)

For the basic generators of su(2) we define in terms of 2 x 2 matrices as in (6.2)

0 1 00 1 0
e+:(0 0)’ 6‘2(1 0)’ h:(o —1)’ (7.1)

which satisfy the Lie algebra
[€+767] = h, [h/7 ei] = :l:2 ei. (7.2)

These matrices satisfy

el =e_, A =h. (7.3)

Under interchange of the rows and columns
b= 01 = b{e+,e_, h}b_l = {e_, €ty —h}. (7.4)
10

Clearly b? = 1 and {e+, e, h}, {e_, e, —h} must satisfy the same commutation relations as
in (7.2) so b generates an automorphism.

For representations of the su(2) Lie algebra then we require operators
={E,,E_,H}, [E.,E_]=H, [H,E.]=+2E,. (7.5)

It is easy to see that the commutation relations are identical with (3.61a) and (3.61a),
and also the hermeticity conditions with (3.62), by taking J. - E., 2J3 > H. Indeed the
representation matrices in (7.1) then correspond exactly with (3.103).

179



An important role in the general theory of Lie groups is played by the automorphism
symmetries of a privileged basis for the Lie algebra which define the Weyl*® group. For
su(2) the relevant basis is given by (7.5) and then from (7.4) there is just one non trivial

automorphism
[—b> (r={F_,E;,-H}. (7.6)

Since b? = I the Weyl group for su(2), W(su(2)) ~ Z,.

For representations we require a finite dimensional representation space on which there
are operators E., H which obey the commutation relations (7.5) and subsequently require
there is a scalar product so that the operators satisfy the hermeticity conditions in (7.3).
A basis for a representation space for su(2) is given by {|r)} where

Hir)=r|r). (7.7)
The eigenvalue r is termed the weight. It is easy to see from (7.5) that
ELlr) o< |r+2) unless F.|r)=0 or E_|r)=0. (7.8)

We consider representations where there is a highest weight, rmax = n, and hence a highest
weight vector |n)p, satisfying
Ein)hw =0. (7.9)

The representation space V,, is then spanned by
{E Ny :7=0,1,...}. (7.10)

On this basis
HE 'n)pw = (n-2r) B |n)hw (7.11)

and using
r—1 r—1
[E..BE"] =Y BB, EJES=E" 'Y (H-28)=E " 'r(H-r+1), (7.12)
s=0 s=0

then from (7.9),
E.E"n)hw =r(n-r+1) E" )y . (7.13)

(7.11) and (7.13) ensure that the commutation relations (7.5) are realised on V,.
If neNg, orn=0,1,2,..., then from (7.13)
-1 = 2w = B ) € Vi (7.14)

is also a highest weight vector, satisfying (7.9). From |-n — 2}y, we may construct, just as
in (7.10), a basis for an associated invariant subspace

V—n—2 c Vn . (715)

“9Hermann Klaus Hugo Weyl, 1885-1955, German.
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Hence the representation space defined by the basis V,, is therefore reducible under the action
of su(2). An irreducible representation is obtained by restricting to the finite dimensional
quotient space

Vo =V [Vonoa. (7.16)

In general for a vector space V' with a subspace U the quotient V /U is defined by
VIU = {Jo)f~: [0} ~ o'} if [0} - ') € U} (7.17)

It is easy to verify that V' /U is a vector space and, if V, U are finite-dimensional, dim(V'/U) =
dimV —-dimU. If X is a linear operator acting on V then

U-U = (Xp)/~}={XW)/~} if p)~') = X:V/U-V/U. (T18)

Thus, if U c V' is an invariant subspace under X, then X has a well defined action on V/U.
Furthermore for traces
tryu (X) = try (X) - trp (X). (7.19)

Since V_,_o is an invariant subspace under the action of the su(2) Lie algebra generators
we may then define F,, H to act linearly on the quotient V,, given by (7.16). On V), this
ensures

E™" Y n)uy =0, (7.20)

so that there is a finite basis {E"|n)py : 7 =0,...,n}. In terms of the angular momentum
representations constructed in section 3, n = 2j. The space V, may equally be constructed
from a lowest weight state |-n) satisfying H|-n) = -n|-n), E_|-n) = 0, in accord with the
automorphism symmetry (7.4) of the su(2) Lie algebra.

If we define a formal trace over all vectors belonging to V,, then

oo n+2
Co(t) = try, (t7) = 1" % = :2—1 (7.21)
r=0 -

where convergence of the sum requires |¢t| > 1. Then for the irreducible representation defined
on the quotient V), by virtue of (7.19), the character is

tn+2 _ t*’n tn+1 _ t*’nfl

Xn(t) = try, (t7) = Cn(t) = Cna(t) = T — (7.22)
This is just the same as (3.132) with ¢t - e3% and n - 2j. Tt is easy to see that
Xn(l) =dimV, =n+1. (7.23)

Although the irreducible representation of su(2) are labelled by n € Ny the characters may
be extended to any integer n with the property

Xn(t) = =X-n-2(t) , (7.24)

as follows directly from (7.22). Clearly x_1(¢) = 0.
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The su(2) Casimir operator in this basis
C=E,E_+E_E.+3H”=2E_E .+ H+H, (7.25)
and it is easy to see that
Clnhw = cn|n)hw for Cn = %n(n +2). (7.26)
Note that c_,,—2 = ¢, as required from (7.14) as all vectors belonging to V,, must have the
same eigenvalue for C.

7.2 A su(3) Lie algebra basis and its automorphisms

We consider a basis for the su(3) Lie algebra in terms of 3 x 3 matrices as in (6.2). Thus
we define

010 0 00 0 01
e1+=10 0 0}, e+ =10 0 11, es+ =10 0 0}, (7.27)
0 00 0 00 0 00
and their conjugates
eio =€, 1=1,2,3, (7.28)
together with the hermitian traceless diagonal matrices
1 0 0 00 0
hi=]0 -1 0], ho=]0 1 0]. (7.29)
0 0 O 0 0 -1

The commutator algebra satisfied by {e1., e, €3x, h1,ho} is invariant under simultaneous
permutations of the rows and columns of each matrix. For b corresponding to the permu-
tation (12) and a to the cyclic permutation (123)

010 0 01
b=|1 0 0], a=|1 0 0], (7.30)
0 01 010
then

b{h1,ha}b™t = {~h1,hy + ha}, b{ers, eas,e3: 107" = {e17, €35, 0.},
a{hi,hata™ = {ha,~h1 - ha}, af{e1s, es,e3:ta = {eas, €37, €15} - (7.31)

The matrices in (7.30) satisfy
V=1, a*=1,  ab=bd?, (7.32)
so that they generate the permutation group S3 = {e, a,a?, b, ab,a?b}.

For representations of su(3) it is then sufficient to require operators

N %(2H1 + Hy) Eqy Esy
{B\s, Bou, B3y, Hy Ho} — [RY)]= I 1(-Hy + Hy) Ey , (7.33)
Fs_ Fsy_ ~3(Hy +2H,)
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acting on a vector space, and satisfying the same commutation relations as the corresponding
matrices {e1., €2z, €34, h1, ho}. The commutation relations may be summarised in terms of
R'; by

[R';, R¥/] = 6" R, - 6" R¥;, (7.34)
since, for X,Y appropriate matrices, (7.34) requires
[tr(XR), tr(Y R)] = tr([X, YV]R), (7.35)

and with the definitions (7.27) and (7.29) we have, from (7.33), tr(e;sR) = Ejy, i =1,2,3
and tl‘(th) = Hi, 1= 1, 2.

Just as with su(2) the possible irreducible representation spaces may be determined
algebraically from the commutation relations of the operators in the privileged basis given
in (7.33). Crucially there are two commuting generators Hy, Hy so that

[H1,H2]=0. (7.36)

For FE;, the commutation relations are
[E1y, Eoy] = E3y [Ers, B3] = [Eor, B3] =0. (7.37)

while under commutation with Hy, Ho

[Hla {EI:H EQia E?):!:}] = £ {2E1i7 _Ein E3:I:} )

[H2,{E1s, Bae, B3 }| = + {-F1.,2E5., Es. } . (7.38)
The remaining commutators involving F;. are
[E1+7E1—] :H17 [E1+aE2—:| :07 [E2+7E2—] :H27
(B3, E1-]= —Eo,, [E3,Ey |=FEi., [E3,E3 ]=H+Hy, (7.39)

together with those obtained by conjugation, [X,Y]" = <[ X!, V1], where E;,' = Ejz and
Hi = H;.

The su(3) Lie algebra basis in (7.33) can be decomposed into three su(2) Lie algebras,
[1 :{E1+7E1—7H1}7 [2:{E2+7E2—7H2}7 [3:{E3+7E3—7H1+H2}7 (740)

where each [; satisfies (7.5). From (7.31) the automorphism symmetries of the privileged
basis in (7.33) are generated by

h—>hLgr, b->I3, -1, h—>1l, b->Bgr, I3—hLg, (7.41)
b b b a a a

with the reflected su(2) Lie algebra defined by (7.6). The corresponding Weyl group, defined
in terms of transformations a, b satisfying (7.32), W (su(3)) ~ Ss.

If we define
H, = %(H1 +2Hs), (7.42)

then the automorphism symmetries become

(i Hy) > (<HyHy), o (HGH) > (3H o+ 2 - Hy - ). (7.43)

Regarding Hy, H, as corresponding to Cartesian x,y coordinates then b represents a reflec-
tion in the y-axis and a a rotation through 27/3.
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7.3 Highest Weight Representations for su(3)

Hy, Hy commute, (7.36), and a standard basis for the representation space for su(3) is given
by their simultaneous eigenvectors |r1,r2) where

H1|7“1,T2)=T1|7“1,T2), HQ‘T1,T2)=’F2‘T1,T2). (7.44)
As a consequence of (7.38) we must then have

E1i|’l“1,7‘2> o< |T‘1 + 2,7‘2 + 1> R

Eo.|r1,mo) oc|ry F 1,10 £2),

Esilri,ra) oc |ri £ 1,mp £ 1), (7.45)
unless F;, and/or E;_ annihilate |r1,72) for one or more individual i. The set of values

[r1,72], linked by (7.45), are the weights of the representation. The may be plotted on a
triangular lattice with r1 along the z-axis and %(rl +2r9) along the y-axis.

For any element o € W (su(3)) there is an associated action on the weights for su(3),
o[ri,r2], such that

Hi—>H,i, H’Z'|?"1,7“2>=7“,i|7“1,7"2>, i=1,2 = [T'Il,’r'lg] =(T[’I”1,7“2:|. (7.46)
ag
From (7.41) this is given by

blri,ro] = [-r1,r1 +1r2], ab[ri,re] =[r1 +re,—re], aQb[m,rg] =[-re,-1],

alry,re] = [ra,-r1 - 12], a2[r1, ro] =[-r1—ro,r1]. (7.47)

As will become apparent the set of weights for any representation is invariant under the
action of the Weyl group, thus su(3) weight diagrams are invariant under rotations by 27/3
and reflections in the y-axis.
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For a highest weight representation there is a unique vector |ny,n2)pw, such that for all
other weights r1 + ro <1 +ng. [n1,n2] is the highest weight and we must then have

Er14|n1,n2)hw = F2+n1,n2)hw =0 = Esing,no)uw =0. (7.48)

The corresponding representation space V[, n,] is formed by the action of arbitrary products
of the lowering operators F;_, ¢ = 1,2,3 on the highest weight vector and may be defined by

Vini,ns] = SPan {Eg_tEg_sEl_T|TL1, No)hw i 7, S, t=0,1,... } . (7.49)

The ordering of Ej_, Es_, E5_ in the basis assumed in (7.49) reflects an arbitrary choice,
any polynomial in Ey_, Es_, F3_ acting on |nj,n2) may be expressed uniquely in terms of
the chosen basis in (7.49) using the commutation relations given by the conjugate of (7.37).

For these basis vectors
H1 E3 EQ sEl_r|n1, n2> (n1 —-2r+s- t) E3 tE2 SEl_r|’rZ1, ng)h
H2 E3 E2 sEl_ |n1, TLQ) (n2 +r—2s— t) E3 tEQ sEl_ |n1, ng)h (7.50)

so that the weights of vectors belonging to V,, ,,] are those belonging to a 27/3 segment
in the weight diagram with vertex at [ni,n2], as shown by the shaded region in the figure
below.

The representation of su(3) is determined then in terms of the action of E;. on the basis
(7.49). For the lowering operators it is easy to see that

B3 E3'BEy *E1"|n1,no)uw = B3 Es SE1 "0y, no )
Ey F3'Ey*Fy "|ny,nadnw = B3 Fa " By " |n1, na )i
Ei_E3'By *E1"|n1,no)uw = B3 By By " ng, noYhw
- 8E3_t+1E2_S 1E1_ |n1,n2)hw, (7.51)
using [Fy_, By %] = —s F3_Fy 571,

The action of E;; on the basis (7.49) may then be determined by using the basic com-
mutation relations (7.39), with (7.38) and (7.37), and then applying (7.48). Just as in (7.12)
we may obtain

[Bi, B\ =By r(Hy -1+ 1), [Eiy, BE2®] =0, [En, Bsl]=-tE;""'Ey, (7.52)
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so that

t
Ei1. E3s"Ey By "|ng, no)hw

= r(nl -r+ 1) Eg,tEQ,SElf_llnl, ’n2>hw - tngt_1E275+1E1,T|n1, n2>hw . (7.53)
Similarly
[Eav, B3] = tBs By, [Ei-, Ey®] = -s B3 By 57,
[Fov, By = Ep "' s(Hy—s+1),  [Ear,FB1"]=0, (7.54)

which leads to

t
Esy B3 "Es *E1"ng, no)nw

= 8(??,2 +r—-s—-t+ 1) Eg_tEg_s_lEl_r|n1, m)hw +1 E3_t_1E2_SE1_T+1|TL1, n2>hw . (7.55)
Furthermore

Esy B3 "By °Fy1"|ny,no)w = [Ers, Bov | B3 Es * E1 "1, no )
= t(n1 +ng—r—-s—t+ 1) Eg,t_lEQ,SEl,q’l’Ll, ng)hw

+ rs(nl -7+ 1) Eg_tEQ_SilEl_rilml, n2>hw . (756)

The results (7.50), (7.51) with (7.53), (7.55) and (7.56) demonstrate how V[, »,] forms
a representation space for su(3) which is in general infinite dimensional.

The space V},,, n,] defines a reducible representation of su(3) when it contains vectors
which satisfy the highest weight condition (7.48) since these generate invariant subspaces.
Highest weight vectors may be constructed in V[, n,] in a similar fashion to the discussion
for su(2). Using, as a special case of (7.53) and (7.55),

E1 By " ng,mo)ew = r(ng — 7+ 1) E1 "y, no)uw s For B1 |1, n2)hw = 0,

Eay By *Ing,no)nw = s(n1 = s+ 1) Eo "' ng, naduw . E1eFa®|na, nahw =0, (7.57)
then for ny,n9 positive integers

|-n1 = 2,01 +ng + Dy = E1-" g, nod

1 +mna + 1, —n2 = 2)hw = B2 0y, o) (7.58)

satisfy the necessary conditions (7.48). Using the highest weight vectors obtained in (7.58)
we may further obtain, for n,ny positive integers, two more highest weight vectors

+n1+2
et \—nl—

Ina, —n1 —ng — 3w = Ea 2,m1 +n2 + Uy,

E17n2 +n1 +2

|—7”L1 —ng — 3, ’I’L1>hw = |7”L1 +ng + 1, —-ng — 2>hw . (7.59)

This construction may also be applied to the highest weight vectors in (7.59) giving one
further highest weight vector

|[-n2 —2,-n1 — 2w = El_"2+1|n2, -n1—ng = 3w = Eg_”1+1|—n1 - n2 — 3,101 ' - (7.60)
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The highest weight vectors determined in (7.58), (7.59), (7.60) are non degenerate, in (7.60)
this depends on the identity”"

El_n2+1E2_n1+n2+2E1_n1+1 — EZ_n1+1E1_n1+n2+2E2_n2+1 . (761)

Clearly this construction of highest weight vectors terminates with (7.60).

For each of highest weight vectors given in (7.58), (7.59) and (7.60), |n'1,n2)nw, there
are associated invariant, under the action of su(3), subspaces Vinn ntp]> constructed as in
(7.49), and contained in Vj,,, n,1- In particular

‘/[—n1—2,n1+n2+1] ) Wn1+n2+1,—n2—2] c Vv[nl,ng] ’
Vv[n27—n1—n2—3] c ‘/Y[—n1—2,n1+n2+1] ’ ‘/Y[—nl—nz—S,n1] c ‘/Y[n1+n2+1,—n2—2] )
‘/[—ng—Q,—nl—Q] c ‘/[nQ,—nl—ng—3] n ‘/Y[—nl—n2—3,n1] : (7.62)

The highest weight vectors which are present are illustrated on the weight diagram below,
with the shaded regions indicating where the associated invariant subspaces are present.

[-ny -2, +p +1] 1=0
[+ ] Ingng]

The reduction of V[,,, ,,,] to an irreducible representation space becomes less trivial than
that given by (7.16) for su(2) due to this nested structure of invariant subspaces. Using the

50This may be shown using the identity F; "FEs* = o (—1)t(:) (Sf!t)! E3 'E;*"*E, """ both sides of

~ . . . . t 27t 27t
(7.61) give rise to the same expansion in E3_‘ Fp "1*"2*7t py mitnata—t,
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same definition of the quotient of a vector space by a subspace as in (7.16) we may define

V(Z[)nl»nz] = (V[nz,—m—nz—S] ® V[—m—nz—S,nl])/V[—n2—2,—n1—2] )
V(l[)nl,nz] = (‘/Y[—n1—27n1+n2+1] @ Vv[n1+n2+1,—n2—2])/V(2[)nl,n2] )
Vinana] = V[m,m]/v(l[)m,m] : (7.63)

In Vi, n, there then are no highest weight vectors other than |n1,n2)ny so invariant sub-
spaces are absent and V[, ,,] 1S a representation space for an irreducible representation
of su(3). Although it remains to be demonstrated the representation space is then finite-
dimensional and the corresponding weight diagram has vertices with weights

[n1,n2], [-ni,ni+n2], [n1+n2,-n2], [-n1-n2,n1], [n2,—ni-n2], [-n2,-ni],

(7.64)

which are related by the transformations of the Weyl group as in (7.47). The sector of the

weight diagram corresponding to highest weight states forming finite dimensional represen-
tations is then

W ={[m,n]:m,neNp}, (7.65)

which is illustrated by

7.3.1 Analysis of the Weight Diagram

It is clear that the construction (7.49) for V{,,, ,,,] requires that in general the allowed weights
are degenerate, i.e. there are multiple vectors for each allowed weight in the representation
space V[, n,] except on the boundary. For a particular weight [r1,72], (7.49) there is a
finite dimensional subspace contained in V[, ,,] given by

V[Efl’liz] = span {ngtEQJ_tElfk_tml, Nohw i 0 <t <k}, (7.66)
where
]{;:%(in +n2—27“1—7“2), l:%(n1+2n2—7’1—2rz). (767)
Clearly
k+1, k<l
dimy D T RS (7.68)
o2l 1141, 1<k,
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To show how (7.63) leads to a finite-dimensional representation we consider how it
applies to for the vectors corresponding to particular individual weights [r1,r2]. In a similar
fashion to (7.66) we may define

(k-n1-1,1) (k,l-n2-1)

‘/[—”1—27n1+n2+1] ’ [n1+n2+1,~n2-2] "
(k-n1-1,l-n1-ng-2) (k-n1-ng-2,l-na-1) (k-n1-n2-2,l-n1-nz—2) (7 69)
[n2,-n1-n2-3] ’ [-n1-n2-3,n1] ? [-n2—-2,—n1-2] ) .

which form nested subspaces, just as in (7.62), and whose dimensions are given by the
obvious extension of (7.68).

To illustrate how the construction of the representation space Vi, »,] in terms of quo-
tient spaces leads to cancellations outside a finite region of the weight diagram we describe
how this is effected in particular regions of the weight diagram by showing that the di-
mensions of the quotient spaces outside the finite region of the weight diagram specified
by vertices in (7.64) are zero and also that on the boundary the dimension is one. For
1)

k <nq, l < ny there are no cancellations for V[(:1 . Taking into account the contributions

na
(k-n1-1,0) (k,l-n2-1) .
fI'OIn ‘/[—n1—12,n1+n2+1] and ‘/[n1+n;—1,—n2—2] glVeS
. (kD) . (k-ni-1,0) 0 if k>l+n1+1,1>0,
dim V, —dim V. = 7.70
P fna) T -2z 1] {1 if k=l+ng, 120, (770
and
o 0 if (>k+ng+1, k>0
di V(k’,l) _di V(k’,l ng—1) _ ) ) 771
Vi) =V gt oa2] N1 i g2 g, k20, (7.71)
Furthermore
(kD) o (k-ni-1,0) o (kil-ng-1)
dlm ‘/[nl,nz] - dlm Vv[—n1 —127n1+n2+1] - dlm Vv[n1+n;—1,—n2—2]
~ l+1-na—(-n2)=1, k=ni+ng,ny<l<ng+ng, (7.72)
- k‘+1—(k—n1)—n1=1, l=n1+n9,n1 <k<ng +noy. '

The remaining contributions, when present, give rise to a complete cancellation so that the
representation space given by (7.63) is finite dimensional. When [ > ng, k > nj +ng + 1,

dim Vi, = dim VO 00y dim Vi e dim VG e
(I+1)-(+1)=(l-n2)+(l-n2), kE>l+n;+1

:{(l+1)—(k:—n1)—(l—n2)+(k‘—n1—ng—l), I<k<l+n+1

-0, (7.73)

and for k,l > nq +ng + 1 in an analogous fashion

. (k,1) . (k-n1-1,1) . (k,l-n2-1) . (k-n1-1,l-n1-n2-2)
dlm ‘/[nl,nz] - dlm ‘/v[fn172,n1+n2+1] - dlm ‘/[n1+n2+1,7n272] + dlm Vv[ng,fnlfnszi]

_ dim ykrimne=2l-nine=2) _ (7.74)

V(k—n1 -ng—2,l-n2-1)
[—n2—2,—n1—2]

L di
dim [-n1-n2-3,n1]
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For the finite representation space V[, »,] then at each vertex of the weight diagram
as in (7.64) there are associated vectors which satisfy analogous conditions to (7.48), in
particular

(E1-,Esy)|-n1,n1 +n2) =0, (Fa-, E3.) [ng + na, —na) ,
(E2+,E3-)|-n1 —ng,n1) =0, (Er+, E3-)|n2,-n1 —n2) =0,
0.

(Er-, Eo-) |-n2, —n) = (7.75)

Each vector may be use to construct the representation space by acting on it with ap-
propriate lowering operators. In this fashion V,, ,,] may be shown to be invariant under
W (su(3)).

A generic weight diagram has the structure shown below. The multiplicity for each
weight is the same on each layer. For nj > no there are no + 1 six-sided layers and then the
layers become triangular. For the six-sided layers the multiplicity increases by one as one
moves from the outside to the inside, the triangular layers all have multiplicity ns + 1. In
the diagram different colours have the same multiplicity.

%ﬁoy@@@
:::oo///\%\% :

7.3.2 SU(3) Characters

A much more straightforward procedure for showing how finite dimensional representations
of SU(3) are formed is to construct their characters following the approach described for
SU(2) based on (7.21) and (7.22). For the highest weight representation space Vi, n,] we

190



then define in terms of the basis (7.49)

. Hy , H: ni—2r+s—t 4 no+r—2s—t
C[nlvnﬂ(tl’tz) = trv[nlvnz](tl ' t2 2> - Zt>0t1 1 t2 2
r,s,t>

=" 1" Z (t2/t12)r (tl/t22)8 (1/t1t2)t . (7.76)

r,s,t>0
For a succinct final expression it is more convenient to use the variables
u=(u1,uQ,U3), ul :tl, U3=1/t2, U1U2U3:1, (777)

so that to/t1? = ug/us, t1/ts* = usfus, 1/t1ts = uz/u; and convergence of the sum requires
uq > ug > ug. Then

ulnl +no+2 u2n2+1

(ur —ug)(uz —u3)(u1 —uz)

Following (7.63) the character for the irreducible representation of su(3) obtained from the
highest weight vector |ni,n2)py is then

Clnna(u) = (7.78)

X[nl,nz](u) = C[n1,n2](u) - C[—n1—2,n1+n2+1](u) - C[n1+n2+1,—n2—2](u)
+ C[—n1—’n2—3,n1] (U) + O[ng,—nl—ng—?)] (u) - C[—n2—2,—n1—2] (’LL)
1

" (1 - uz)(ug - uz)(ur - uz)

x (u17L1+7L2+2 u2n2+1 _

ni+ng+2

us no+l

uy ni+ng+2 u3n2+1

Uy

n1+n2+2 u3n2+1 _

+ U9 ni+no+2 u2n2+1 +

usg u3n1+n2+2 U1n2+1) . (779)

It is easy to see that both the numerator and the denominator are completely antisymmetric
80 that X[, n,)(u) is a symmetric function of w1, ug, us, the S3 = W(su(3)).

If we consider a particular restriction we get

1-— qn1+1 1= qn2+l 1- q—nl—n2—2

Lgh)= 7.80
X[nl,ng]((L 7q ) 1_q 1_q 1_q,2 ? ( )

and hence it is then easy to calculate
dim Vi, 101 = Xna o] (1, 1,1) = 2(n1 + 1) (n2 + 1) (ny + ng +2) . (7.81)

The relation of characters to the Weyl group is made evident by defining, for any element
o € W(su(3)), a transformation on the weights such that

[r1,72]7 =o[r1 + 1,79 + 1] - [1,1]. (7.82)

Directly from (7.47) we easily obtain

[Tl,'f‘g]b = |:—7"1 - 2,7“1 + 79 + 1] s [Tl,Tg]ab = [Tl + 79 + 1, —T9 — 2] s
2
[r1,72]" = [r2,—11 =12 - 3], [r1,72]" =[-r1—712-3,7m1],
[r1,72]%°0 = [=ry = 2,-ry - 2]. (7.83)
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Clearly [n1,m2]7 generates the weights for the highest weight vectors contained in V
as shown in (7.58), (7.59) and (7.60). Thus (7.79) may be written more concisely as

X[nl,nz](u) = Z PU C[m’m]a(u) = Z C[nl,ng](UU), (784)

oeS3 oeS3

ni,n2]s

with, for o € S3,

P, - {11, o odd permutation, (7.85)

, 0 even permutation,

and where ou denotes the corresponding permutation, so that b(uy,us,us) = (ug,u1,us),
a(u1,uz,uz) = (uz,us,u1). The definition of X[, n,1(u) extends to any [n1,na] by taking

X[ni,mn2]? (u) = PUX[ru,nz](“) . (7.86)
Since [~1,7]° = [-1,7], [r,-1]% = [r,~1] and [r, —r - 2]"’2b = [r,—r — 2] we must then have

X[-1,r] (’LL) = X[r,-1] (u) = X[r,—r-2] (’LL) =0. (787)

This shows the necessity of the three factors in the dimension formula (7.81). It is important
to note that for any [ny,ns]

ni,no -1, n1 +ng -2, [n1,n2]° € W for a unique o € Ss, (7.88)

where W is defined in (7.65).

7.3.3 Casimir operator

For the basis in (7.33) the su(3) quadratic Casimir operator is given by

C=R;R; =%} (EiEio + Ei_Ep) + 2(H? + Hi + HiH>)
= Ei By + 2(HP + HY + HiHy) + 2(Hy + Hy). (7.89)

Acting on a highest weight vector
Clni,m2)hw = Ciny ny] M1, M2 )hw 5 (7.90)
where, from the explicit form in (7.89),
Clnrma] = 5(n1® +ng” +n1ng) +2(ny +n2) . (7.91)

It is an important check that ¢, n,] = C[n, n,] @8 required since C has the same eigenvalue

Clny,no] for all vectors belonging to Vi, ,,1-
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7.3.4 Particular SU(3) Representations

We describe here how the general results for constructing a finite dimensional su(3) irre-
ducible representation spaces V[, ,,] apply in some simple cases which are later of physical
relevance. The general construction in (7.63) ensures that the resulting weight diagram is
finite but in many cases the results can be obtained quite simply by considering the su(2)
subalgebras in (7.40) and then using results for su(2) representations.

The trivial singlet representation of course arises for n; = ne = 0 when there is unique
vector |0,0) annihilated by F;. and H;.

A particularly simple class of representations arises when no = 0. In this case applying
the su(2) representation condition (7.20) the highest weight vector must satisfy

E1 " Yng, 00w =0,  Ey_|n1,0)yw = 0. (7.92)
Furthermore, using [F3,, F1."] = —rEy "1 By,
Esy E1."nq, 0y =0, (Hy+ Hs2) E1-"n1,0)pw = (n1 = 7) E1-" |1, Oy (7.93)
so that E1"|ng, O)ny is a su(2);, highest weight vector so that from (7.20) again
Es ™™™ B "ng, 0)pe = 0. (7.94)
Hence a finite dimensional basis for V[, o1 is given by
B3 'E1 "[ng, 0y t=0,...n1-7r, r=0,...,n1, (7.95)

where there is a unique vector for each weight [ny — 2r — t,r — t], which therefore has
multiplicity one. It is easy to check that this is in accord with the dimension of this
representation dim Vy,, o1 = %(nl +1)(ng +2).

These representations have triangular weight diagrams as shown below.




A corresponding case arises when nq = 0 and the roles of F1_ and Fs_ are interchanged.
In this case the basis vectors for Vg ,] are just E3'Fy 5|0, n2)ny for t =0,...n2 -5, s =
0,...,n2 and the weight diagram is also triangular.

In general the weight diagrams for ] may be obtained from that for Vi, »,] by

na,n1
rotation by m, these two representations are conjugate to each other.

The next simplest example arises for n; = ng = 1. The su(2) conditions (7.20) for the
highest weight state require

E1 21, D) = B2 2|1, 1) = E3 3|1, 1)y = 0. (7.96)

Since Ej_|1,1)hy is a highest weight vector for su(2);, and, together with Ea_|1,1)py, is
also a su(2);, highest weight vector then the weights and associated vectors obtained from
|1, 1)pw in terms of the basis (7.49) are then restricted to just

[_172] : E1—|]-a 1)hW7 [2’_1] : E2—|17 1>hW7 [070] : E3—|1a 1>hW7 E2—E1—|17 1)hW’
[-2,1]: Es-Er-[1,1)ny,  [1,0]: E3-Es |1, 1)y, Eo*Er_[1, 1)hy,
[_L_l] : E3*2|]‘71>hW7 E37E2—E17|171>hW' (797)

However (7.96) requires further relations since
E2_2E1_’1, 1)hw = (EQ_El_Eg_ + E3_E2_)|1, 1>hw =2 Elg_EQ_ll7 1>hw s (798)
which then entails

B\ By *Ey |1, 1)ny = -2 E3_Ey Ey |1, 1)ny
=2F1_E3 B> |1,y = 2(E3-Eo-E1_ - B3 ?)|1, 1)y » (7.99)
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so that furthermore
Es 1,1 =2E3 Fy E1 |1, 1)1y - (7.100)

All weights therefore have multiplicity one except for [0,0] which has multiplicity two. The
overall dimension is then 8 and V[ ;] corresponds to the SU (3) adjoint representation. The
associated weight diagram is just a regular hexagon, invariant under the dihedral group
D3 ~ S3, with the additional symmetry under rotation by 7 since this representation is
self-conjugate.

7.4 SU(3) Tensor Representations

Just as with the rotational group SO(3), and also with SU(2), representations may be
defined in terms of tensors. The representation space for a rank r tensor is defined by
the direct product of r copies of a fundamental representation space, formed by 3-vectors
for SO(3) and 2-spinors for SU(2), and so belongs to the r-fold direct product of the
fundamental representation. Such tensorial representations are reducible for any r > 2 with
reducibility related to the existence of invariant tensors. Contraction of a tensor with an
invariant tensor may lead to a tensor of lower rank so that these form an invariant subspace
under the action of the group. Tensor representations become irreducible once conditions
have been imposed to ensure all relevant contractions with invariant tensors are zero.

For SU(N) it is necessary to consider both the N-dimensional fundamental representa-
tion and its conjugate, SU(2) is a special case where these are equivalent. When N = 3 we
then consider a complex 3-vector ¢ and its conjugate ¢ = (¢*)*, i = 1,2, 3, belonging to the
vector space S and its conjugate S, and which transform as

qi — Aij qj , Qi = qj (Ail)ij R [A]z] € SU(3) . (7.101)
A (r, s)-tensor T;;;: is then one which belongs to S(®S)" ' (®S)® and which transforms
as
Titr > ARy AT TR (AT (AT, (7.102)
The conjugate of a (r,s)-tensor is a (s,)-tensor
T = (TR (7.103)
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The invariant tensors are a natural extension of those for SU(2), as exhibited in (3.287)
and (3.288). Thus there are the 3-index antisymmetric e-symbols, forming (3,0) and (0, 3)-
tensors, and the Kronecker §, which is a (1, 1)-tensor,

giik Eijk » 5;’, ) (7.104)
That £¥* and €;jk are invariant tensors is a consequence of the transformation matrix A
satisfying det A = 1. The transformation rules (7.102) guarantee that the contraction of an
upper and lower index maintains the tensorial transformation properties. In consequence
from a tensor Tﬁ;: then contracting with /= or e ; , for some arbitrary pair of
indices, generates a (r+1,s—2) or a (r —2,s+ 1)-tensor. Similarly using ¢’; we may form
a (r—1,s—1)-tensor. Thus the vector space of arbitrary (r,s)-tensors contains invariant
subspaces, except for the fundamental (1,0) or (0,1) tensors or the trivial (0,0) singlet.
Just as for SO(3) or SU(2) we may form an irreducible representation space by requiring all
such contractions give zero, so we restrict to (7, s)-tensors with all upper and lower indices
totally symmetric, and also traceless on contraction of any upper and lower index,
Girir - gUiin) L ghdrai (7.105)

J1~--j5 (]1]3) ’ ]1-~-js—1i

The vector space formed by such symmetrised traceless tensors forms an irreducible
SU(3) representation space V[, ;. To determine its dimension we may use the result in
(3.220) for the dimension of the space of symmetric tensors, with indices taking three
values, for n = r, s and then take account of the trace conditions by subtracting the results
for n=r-1,s—-1. This gives

dim V.= 5(r+1)(r+2) 3(s+1)(s+2) - 3r(r+1) 3s(s+1)
=s(r+1)(s+1)(r+s+2). (7.106)
This is of course identical to (7.81). The irreducible representation space constructed in

terms of (7, s)-tensors is isomorphic with the finite dimensional irreducible space constructed
previously by analysis of the Lie algebra commutation relations.

7.4.1 su(3) Lie algebra again

For many applications involving SU(3) symmetry it is commonplace in physics papers to
use a basis of hermitian traceless 3 x 3 matrices, forming a basis for the su(3) Lie algebra,
which are a natural generalisation of the Pauli matrices in (3.19), the Gell-Mann A-matrices
Aa,a=1,...,8,

010 0 —i 0 1 0 0 Lt 00
M=t 0o o], x=|i 0 o], x=[0 -1 o], x=—2|01 0],
000 0 0 0 0 0 0 V3lo 0 -2
00 1 00 —i 000 00 0
M=10 0 0], x=|0 0 0,/\6001), /\7001'). (7.107)
100 i 0 0 010 0 i 0
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These satisfy
tr(/\a)\b) =204p, (7.108)

and
[)‘av )‘b] =21 fabc>\c y (7109)

for totally antisymmetric structure constants, fu.. In terms of the matrices defined in
(7.27) and (7.29) it is easy to see that ej, = %()\1 +iXg), €94 = %(/\6 +iA7), €34 = %(/\4 +1i)s5)

and also A3 = hy, \g = %(h1 +2hs).

The relation between SU(3) matrices and the A-matrices is in many similar to that for
SU(2) and the Pauli matrices, for an infinitesimal transformation the relation remains just
as in (3.38). (3.23) needs only straightforward modification while instead of (3.20) we now
have

AaAp = % T+ dgpe Ac + ifabc A, (7110)

with dgpe totally symmetric and satisfying dgp = 0.

7.5 SU(3) and Physics

Besides its virtues in terms of understanding more general Lie groups a major motivation
in studying SU(3) is in terms of its role in physics. Historically SU(3) was introduced, as
a generalisation of the isospin SU(2);, to be an approximate symmetry group for strong
interactions, in current terminology a flavour symmetry group, and the group in this con-
text is often denoted as SU(3)p. Unlike isospin, which was hypothesised to be an exact
symmetry for strong interactions, neglecting electromagnetic interactions, SU(3) p is intrin-
sically approximate. The main evidence is the classification of particles with the same spin,
parity into multiplets corresponding to SU(3) representations. For the experimentally ob-
served SU(3) particle multiplets, unlike for isospin multiplets, the masses are significantly
different.

For SU(3)F the two commuting generators are identified with I3, belonging to SU(2),
and also the hypercharge Y, where [I;,Y] = 0 so that Y takes the same value for any
isospin multiplet. Y is related to strangeness S, a quantum number invented to explain
why the newly discovered, in the 1940’s, so-called strange particles were only produced in
pairs, the precise relation is Y = B + 5, with B the baryon number. For any multiplet
we must have tr(l3) = tr(Y) = 0. Expressed in terms of the su(3) operators Hi, Ha,
Is = H,Y = %(Hl +2Hs). For SU(3)r multiplets the electric charge is determined by
Q=13+ %Y and so must be always conserved, but Y is not conserved by weak interactions
which are responsible for the decay of strange particles into non-strange particles.

For SU(3)r symmetry of strong interactions to be realised there must be 8 operators
satisfying the su(3) Lie algebra. If the same basis as for the \-matrices in (7.107) is adopted
then these are Fy, a=1,...,8, where F;, are hermitian, and

[Fo,Fy] = ifapeF. F=1I, i=1,2,3, FS:%Y. (7.111)

From a more modern perspective SU(3)p is understood to be a consequence of the
fact that low mass hadrons are composed of the three light quarks ¢ = (u,d,s) and their
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anti-particles ¢ = (@, d, 5), corresponding to three quark flavours. These belong respectively
to the fundamental [1,0] and [0, 1] representations, more often denoted by 3 and 3*. On
a weight diagram these are the simplest triangular representations. With axes labelled by
I3,Y these are

wy

-1/2 12 g -1 12 g

ol

S

s

The charges of quarks are dictated by the requirement @) = I 3+%Y and so for ¢ are fractional,
% and —%, while for ¢ they are the opposite sign. We may further interpret the quantum
numbers in terms of the numbers of particular quarks minus their anti-quarks, hence I3 =
Ny — Nz - Ng+ Ngand S =-Ng+ Nz, where each ¢ has baryon number B = % and each q,

1
Bz—g,

As is well known isolated quarks are not observed, they are present as constituents of
the experimentally observed mesons, which are generally gg composites, or baryons, whose
quantum numbers are consistent with a qqgq structure. The associated representations have
zero triality, elements belonging to the centre Z(SU(3)) act trivially, or equivalently the
observed representations correspond to the group SU(3)/Zs.

For the mesons we have self-conjugate octets belonging to the [1,1], or 8, SU(3) repre-
sentations. The weight diagram for the lightest spin-0 negative parity mesons is

Here the kaons K*, K? and K°, K~ are I = % strange particles with S =1 and S =-1. A
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similar pattern emerges for the next lightest spin one negative parity mesons.

ass(Mev ?

89'22&( ,,,,,,,,, ) _K*G 1 ‘K*"’ ,,,,,,,,,,,,,,,,,,,,,,,
m 2 i y
e @ 2 S o S
892 i K i KO

The lightest multiplet of spin—% baryons is also an octet, with a similar weight diagram, the
same set of I3, Y although of course different particle assignments.

ass(Mev) = |
939 n@- 1 ®
————————————————————————— e
1193 0 T T, PR s
e ¥ :A‘ ,,,,,, i @
1318 @=L

The novelty for baryons is that there are also decuplets, corresponding to the [3,0] and
[0,3] representations, or labelled by their dimensionality 10 and 10*. The next lightest
spin—% baryons and their anti-particles belong to decuplets.
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Except for the 2™ the particles in the decuplet are resonances, found as peaks in the invariant
mass distribution for various cross sections. Since mz + mg > mq- the £~ can decay only
via weak interactions and its lifetime is long enough to leave an observable track.

7.5.1 SU(3)r Symmetry Breaking

Assuming quark masses are not equal there are no exact flavour symmetries in strong
interactions, or equivalently QCD, save for a U(1) for each quark. Even isospin symmetry
is not exact since m,, # my. Restricting to the three light ¢ = (u,d, s) quarks the relevant
QCD mass term may be written as

Lo = — My Gu—mgdd —mg §s
= —mqq - 5(mu = ma) QAsq — 5= (M +ma = 2ms) GAsq (7.112)

for m = %(mu +mg +mg). If the difference between m,, my is neglected then the strong
interaction Hamiltonian must be of the form

H:HO+T87 (7113)

where Hy is a SU(3) singlet and Ty is part of an octet of operators {T,} so that, with the
SU(3) operators {F,} as in (7.111), we have the commutation relations [Fy, Hp] = 0 and

[Fo,Ty] = ifapcTe. The Hamiltonian in (7.113) is invariant under isospin symmetry since
[1;, T3] = 0.

In any SU(3) multiplet the particle states may be labelled |II3,Y") for various isospins
I and hypercharges Y, depending on the particular representation. For Is =-I,-I+1,...,1
the vectors |I13,Y’) form a standard basis under SU(2);. With isospin symmetry the particle
masses are independent of I3 and to first order in SU(3) symmetry breaking

mry =m0+(113,Y|T8|113,Y>. (7114)

It remains to determine a general expression for (II3,Y|Ts|I13,Y), which is essentially
equivalent to finding the extension of the Wigner-Eckart theorem, described in section 3.13,
to SU(3).
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Instead of finding results for SU(3) Clebsch-Gordan coefficients the necessary calculation
may be accomplished, in this particular case, with less effort. It is necessary to recognise that
the crux of the Wigner-Eckart theorem is that, as far as the I,Y dependence is concerned,
(I13,Y|Tg|I15,Y) is determined just by the SU(3) transformation properties of Tg. Hence,
apart from overall undetermined constants, Ty may be replaced by any other operator with
the same transformation properties. For convenience we revert to a tensor basis for the
octet T, - T";, T%; = 0, and then with F, - R'; as in (7.33),

[RY;, 7% ] =% 1" -0 T";,  Ty=3(T"+T%-27%). (7.115)

This ensures that T%; is a traceless (1,1) irreducible tensor operator. Any such tensor
operator constructed in terms of R'; has the same SU(3) transformation properties. The
simplest case is if 7°; = R'; when (7.115) requires

Ty = 1(Hy+2Hs) =Y, (7.116)

with Y the hypercharge operator. An further independent (12 1) operator is also given by
the quadratic expression T"; = %(RZkRkj + Rij’k) - %5@- RF,R',, which then leads to

Tg = %(leékl + Rklfflk + R2kRk2 + Rk2R2k - nglffk:g - Rk3R3k) - éC, (7.117)
where C'is the SU(3) Casimir operator defined in (7.89). Using (7.33) then

2
ng %(E1+E1_+E1_E1++%H12)—%(H1+2H2) —%C
=LI;-1Y*-1C, (7.118)

with I; the isospin operators and (7.25) has been used for the SU(2); Casimir operator.
For a 3 x 3 traceless matrix R, R? - %Itr(R?’) = %Rtr(RQ) so that there are no further

independent cubic, or higher order, traceless (1, 1) tensor operators formed from R’J

The results of the Wigner-Eckart theorem imply that, to calculate (IIs,Y|Ts|I13,Y),
it is sufficient to replace Tg by an arbitrary linear combination of (7.116) and (7.118).
Absorbing an I, Y independent constant into mg and replacing the operators I;I; and Y by
their eigenvalues this gives the first order mass formula

mry =mo+aY +b(I(I+1)-1v?), (7.119)
with a,b undetermined coefficients.

For the baryon octet (7.119) gives 2(my + mg) = 3my, + my, which is quite accurate.
For the decuplet the second term is proportional to the first so that the masses are linear
in Y, again in accord with experimental data. For mesons, for various reasons, the mass

formula is applied to m?, so that 4m[2( = sz + mg .

7.5.2 SU(3) and Colour

The group SU(3) plays a more fundamental role, other than a flavour symmetry group,
as the gauge symmetry group of QCD. Each quark then belongs to the three dimensional
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fundamental, 3 or [1,0], representation space for SU(3)colour SO that there is an addi-
tional colour index r = 1,2,3 and hence, for each of the six different flavours of quarks
q =u,d,s,c,b,t in the standard model, we have ¢". The antiquarks belong to the conjugate,
3* or [0, 1], representation space, .. The crucial assumption, yet to be fully demonstrated,
is that QCD is a confining theory, the states in the physical quantum mechanical space are
all colour singlets. No isolated quarks are then possible and this matches with the observed
mesons and baryons since the simplest colour singlets are just

qQrq2 Erst ' 42°q3 - (7.120)

Baryons are therefore totally antisymmetric in the colour indices. Fermi statistics then
requires that they should be symmetric under interchange with respect to all other variables,
spatial, spin and flavour. This provides non trivial constraints on the baryon spectrum which
match with experiment. The additional colour degrees of freedom also play a role in various
dynamical calculations, such as the total cross section for e”e* scattering or 70 — v+ decay.

7.6 Tensor Products for SU(3)

Just as for angular momentum it is essential to be able to decompose tensor products
of SU(3) representations into irreducible components in applications of SU(3) symmetry.
Only states belonging to the same irreducible representation will have the same physical
properties, except for dynamical accidents or a hidden addition symmetry.

For small dimensional representations it is simple to use the tensor formalism described
in section 7.4 with irreducible representations characterised by symmetric traceless tensors
as in (7.105). Thus for the product of two fundamental representations it is sufficient to
express it in terms of its symmetric and antisymmetric parts

gl ¢t = S + kg, ST =qligd), G = Senija'ad . (7.121)
while for the product of the fundamental and its conjugate it is only necessary to separate
out the trace

o S S . o

q;q = MZJ + 535, MZ] = q,q - %(55 arq”, S= %qiqz. (7.122)
These correspond respectively to

3®3=603", 3"®3=801. (7.123)

For the product of three fundamental representations then the decomposition may be ex-
pressed in terms of an irreducible (3,0) tensor, two independent (1,1) tenors and a singlet

qlqd qgk = DYk 4 5ilelj + 5jleli + EiﬂB';C + aiij,
DR = g g ¢, S=tegral ¢ af
B} = 2k ¢ ¢, B'f = teial ¢f g3 - o S. (7.124)
To verify that this is complete it is necessary to recognise, since the indices take only three

values, that g L L
Ez]lBlk n nglBg + €JleZ —_ 5UkBll = 07 (7125)

202



for any B; belonging to the 8 representation. (7.124) then corresponds to
33®3=100808a1. (7.126)
These of course are the baryon representations for SU(3)p.

In general it is only necessary to use the invariant tensors in (7.104) to reduce the tensor
products to irreducible tensors. Thus for the product of two octets the irreducible tensors
are constructed by forming first the symmetric (2,2), (3,0), (0,3) tensors as well as two
(1,1) tensors and also a singlet by

B;:B’feB((;B’f)), BB | ey BB, BiBY. BiB, BiB. (1.127)

and then subtracting the required terms to cancel all traces formed by contracting upper
and lower indices, as in (7.122). This gives the decomposition

828=27910010"®8®8® 1. (7.128)

7.6.1 Systematic Discussion of Tensor Products

For tensor products of arbitrary representations there is a general procedure which is quite
simple to apply in practice. The derivation of this is straightforward using characters to find
an algorithm for the expansion of the product of two characters for highest weight irreducible
representations as in (2.85). For su(3), characters are given by (7.79). In general these have
an expansion in terms of a sum over the weights in the associated weight diagram

T1+7T2 +2u27’2 +1

Xp(u) = ny yu : A=[ny,n2], A=[r,m], (7.129)
A .2

where ny » is then the multiplicity in the representation space Vj for vectors with weight
A. Due to the symmetry of the weight diagram under the Weyl group we have
My A =Ny oy (7.130)

Using (7.78) it is easy to see that

Cp(w) Xy (u) = %: a7 2 Cpa(u), (7.131)

and since, for the weights {\} corresponding to the representation with highest weight A,
{A}={oA}, (A+A)7=A%+0), (7.132)
then, with (7.130), we may use (7.84) to obtain

Xa () xar(u) = ZA: nar A X pp (W) - (7.133)

However in general A + A ¢ W, as defined in (7.65). In this case (7.86) may be used to
rewrite (7.133) as

XA(U)XA/(U):ZnAI7APJX(A+)\)G(u), (A+X)7eW, (7.134)
5 A+X
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dropping all terms where A + ) satisfies any of the conditions in (7.87) ensuring x, , ,(u) =0,
so that, by virtue of (7.88), o in (7.134) is then unique. Since in (7.134) some terms may
now contribute with a negative sign there are then cancellations although the final result is
still a positive sum of characters.

The result (7.134) may be re-expressed in terms of the associated representation spaces.
For a highest weight A the representation space Vj has a decomposition into subspaces for
each weight,

Vi=@VY.  dmVY =n, . (7.135)
ATNITA A A A

and then (7.134) is equivalent to

VA ® VAI ~ @ nA/7APU V(A+A)" , (A +A)U eW. (7.136)
o A

This implies the corresponding decomposition for the associated representations.

As applications we may consider tensor products involving V[, g7 which has the weight

decomposition
V[I»O] - [170] ’ [_17 1] 9 [07 _1] 3 (7137)

and then

Vinine] @ V(1,01 2 Vin+1,n2] © Vi -1,n241] ® Ving na-1]

- {V[L”ﬂ & Vomo-11, M =0, (7.138)
VIni+1,00 ® Vin,-1,1], n2=0.
It is easy to see that this is in accord with the results in (7.126). For an octet
V[l,l] -[1,1], [2,-1], [-1,2], [0,0]2, [1,-2], [-2,1], [-1,-1], (7.139)
so that, for ni,ng > 2,
Vining] @ V1,11 * Vi +1,n2+1] @ Vini+2,n2-1) @ Vini-1,n2+2] @ Vi na)
® Vinyna] © Ving+1m5-2] © Vini-2.n541] ® Ving 1np-1] » (7.140)
with special cases
Vi1 © V1) = V221 @ Vis00 @ Vio,31 @ V1,11 © V1,11 © Vjo,0) » (7.141)
which is in accord with (7.128), and
Vi3,01® V1,1 = Va1 © Vig21 © Vs 01 © V1) (7.142)

using V4 9] ~ —V[3,0]- Equivalently, labelling the representations by their dimensions

1098=-3502701008. (7.143)
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8 Gauge Groups and Gauge Theories

Gauge theories are fundamental to our understanding of theoretical physics, many successful
theories such as superconductivity and general relativity are best understood in terms of
an appropriate gauge symmetry and its implementation. High energy particle physics is
based on quantum gauge field theories. A gauge theory is essentially one where there are
redundant degrees of freedom, which cannot in general be eliminated, at least without
violating other symmetries that are present. The presence of such superfluous degrees of
freedom requires a careful treatment when gauge theories are quantised and a quantum
vector space for physical states is constructed. If the basic variables in a gauge theory are
denoted by ¢ then gauge transformations ¢ — ¢9, for g € G for some group G, are dynamical
symmetries which define an equivalence g ~ ¢9. The objects of interest are then functions of
q which are invariant under G, in a physical theory these are the physical observables. For
a solution ¢(t) of the dynamical equations of motion then a gauge symmetry requires that
¢?M(t) is also a solution for arbitrary continuously differentiable g(t) € Gy ~ G. For this
to be feasible G’ must be a Lie group, group multiplication is defined by ¢(t)g'(t) = gg’(t)
and the full group of gauge transformations is then essentially G ~ ®,G;. A gauge theory in
general requires the introduction of additional dynamical variables which form a connection,
depending on t, on Mg and so belongs to the Lie algebra g.

For a relativistic gauge field theory there are vector gauge fields, with a Lorentz index
A, (), belonging to g. Denoting the set of all vector fields, functions of « and taking values
in g, by A, we can then write

A eA. (8.1)
In a formal sense, the gauge group G is defined by
G=QG., (8.2)

i.e. an element of G is a map from space-time points to elements of the Lie group G (the
definition of G becomes precise when space-time is approximated by a lattice). Gauge
transformations act on the gauge fields so that

Au(a) — A7 (@) ~ Au(@) (8.3)

Gauge transformations g(z) are then the redundant variables and the physical space is
determined by the equivalence classes of gauge fields modulo gauge transformations or

AlG. (8.4)
If A,(x) is subject to suitable boundary conditions as |z| - oo, or we restrict x € M for

some compact M, then this is topologically non trivial.

The most significant examples of quantum gauge field theories are®!,

Theory: QED WEINBERG-SALAM model QCD,
Gauge Group: U(1) SU(2)eU(1) SU(3).

5!Steven Weinberg, (1933-), American. Abdus Salam, (1926-1996), Pakistani. Nobel Prizes 1979.

205



Renormalisable gauge field theories are almost uniquely determined by specifying the gauge
group and then the representation content of any additional fields.

8.1 Abelian Gauge Theories

The simplest example arises for G' = U(1), which is the gauge group for Maxwell®? electro-
magnetism, although the relevant gauge symmetry was only appreciated by the 1920’s and
later. For U(1) the group elements are complex numbers of modulus one, so they can be
expressed as €'“, 0 < o < 2. For a gauge theory the group transformations depend on z so
we can then write €’*(®). The representations of U(1) are specified by ¢ € R, physically the
charge, so that for a complex field ¢(z) the group transformations are

6— G- (8.5)
e’LOé
If the field ¢ forms a non projective representation we must have
qeZ={0,+1,+2,...}. (8.6)

In quantum mechanics this is not necessary but if the U(1) is embedded in a semi-simple
Lie group then, with a suitable convention, ¢ can be chosen to satisfy (8.6). For U(1) the
multiplication of representations is trivial, the charges just add, and also under complex
conjugation ¢ — —q. It is then easy to construct lagrangians L4 which are invariant under
(8.5) for global transformations, where « is independent of x. Restricting to first derivatives
this requires

‘C(b(d): 8/1¢) = £¢(¢,7 8,u¢,) 5 (87)

and an obvious solution, which defines a Lorentz invariant theory for complex scalars ¢, is
then

Lo($,0,0) = 06" - V(67 6). (8.8)

For local transformations, when the elements of the gauge group depend on x, the initial
lagrangian is no longer invariant due to the presence of derivatives since

¢’ = €1(9ud +iq0u 9), (8.9)

and the J,o terms fail to cancel. This is remedied by introducing a connection, or gauge
field, A, and then defining a covariant derivative on ¢ by

Dy = 06— iqA . (8.10)

If under a local U(1) gauge transformation, as in (8.5), the gauge field transforms as

A“—_>Au+8#a=A’#, (8.11)
so that '
D'qu' =e"“D,¢, (8.12)

52James Clerk Maxwell, 1831-79, Scottish, second wrangler 1854.
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and then it is easy to see that, for any globally invariant lagrangian satisfying (8.7),

Ls(¢,Du¢) = Ls(¢', D'ue'). (8.13)

It is important to note that for abelian gauge theories A, ~ A’,, which corresponds precisely
to the freedom of polarisation vectors in (4.227) when Lorentz vector fields are used for
massless particles with helicities £1.

The initial scalar field theory then includes the gauge field A,, as well as the scalar
fields ¢, both gauge dependent. For well defined dynamics the scalar lagrangian £, must
be extended to include an additional gauge invariant kinetic term for A,. In the abelian
case it is easy to see that the curvature

Fu=0,A,-0,A,=F, (8.14)

is gauge invariant, since 0,0, = 9,0, In electromagnetism F),, decomposes in to the
electric and magnetic fields and is related to the commutator of two covariant derivatives
since

(D, Dy)¢ =—iqF,¢. (8.15)
The simplest Lorentz invariant, gauge invariant, lagrangian is then
1
L= ﬁgauge + £¢(¢7 Du¢) 3 Egauge = _E F'LLVFMV y (816)

with e an arbitrary parameter, unimportant classically. It is commonplace to rescale the
fields so that
A, —eA,, D¢ =0,¢—-ieqAud, (8.17)

so that e disappears from the gauge field term in (8.16). The dynamical equations of motion
which flow from (8.16) are, for the gauge field,

1 , 0
g 8“FMV =Jv= —@E¢(¢, DN(ZS) y (818)

which are of course Maxwell’s equations for an electric current j, and e becomes the basic
unit of electric charge. A necessary consistency condition is that the current is conserved
0”j, = 0. In addition F},, satisfies an identity, essentially the Bianchi identity, which follows
directly from its definition in (8.14),

OuFy + 0, Fy + 0y F e = 0. (8.19)

In the language of forms, A = A,dz", F = %FW da? A da¥ = dA, this is equivalent to
dF =d?A=0.

8.2 Non Abelian Gauge Theories

In retrospect the generalisation of gauge theories to non abelian Lie groups is a natural
step. A fully consistent non abelian gauge theory was first described in 1954, for the group
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SU(2), by Yang and Mills® so they are often referred to, for the particular gauge invariant
lagrangian generalising the abelian lagrangian given in (8.16) and obtained below, as Yang-
Mills theories. Nevertheless the same theory was also developed, but not published, by
R. Shaw"* (it appeared as an appendix in his Cambridge PhD thesis submitted in 1955
although this work was done in early 1954). Such theories were not appreciated at first
since they appeared to contain unphysical massless particles, and also since understanding
their quantisation was not immediate.

Following the same discussion as in the abelian case we first consider fields ¢ belonging
to the representation space V for a Lie group G. Under a local group transformation then

¢(x) o 9(x)d(z) = ¢'(x), (8.20)

for g(z) € R for R an appropriate representation, acting on V), of G. Manifestly derivatives
fail to transform in the same simple homogeneous fashion since

Ou(x) o 9(2)(8u6(x) + g(2) Vg (@) $(x)) = Bud' (), (8.21)

where g‘lﬁug belongs to the corresponding representation of the Lie algebra of G, g, which
is assumed to have a basis {t¢,} satisfying the Lie algebra (5.60). As before to define a
covariantly transforming derivative D, it is necessary to introduce a connection belonging
to this Lie algebra representation which may be expanded over the basis matrices ¢,,

Au(x) =A% (x) tq, (8.22)
and then
Dy¢=0u+AuL)o. (8.23)
Requiring
D',¢"=gD,¢, (8.24)
or
g_lAlug + g_lf)ﬂg = Ay, (8.25)

then the gauge field must transform under a gauge transformation as

A, —g> A,u =gA, g_1 - #gg_1 =gA, g_1 + gﬁﬂg_1 . (8.26)

Hence if L4(¢,0,¢) is invariant under global transformations ¢ — g¢ then L4(¢, D) is
invariant under the corresponding local transformations, so long as A, also transforms as
in (8.26).

It is also useful to note, since G is a Lie group, the associated infinitesimal transforma-
tions when

g=1+X,  A=)\. (8.27)

53Chen-Ning Franklin Yang, 1922-, Chinese then American, Nobel prize 1957. Robert L. Mills, 1927-99,
American.

®Ron Shaw, 1929-2016, English.
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Then from (8.20) and (8.24), for arbitrary \*(z),
S¢=Ap,  0Dub=ADuo, (8.28)
and from (8.26)
0A,=[NA -0 = A% =% AR - 0. (8.29)

The associated curvature is obtained from the commutator of two covariant derivatives,
as in the abelian case in (8.15), which gives

[DH7DV]¢:F,LLV¢1 F,Lw :Fauutaa (8.30)
so that
Fu =04A, - 0,A, + [Au, Al (8.31)
or
Fa;w = 8uAau - auAau + fabc Ab,uACV . (832)

Unlike the abelian case, but more akin to general relativity, the curvature is no longer linear.
The same result is expressible more elegantly using differential form notation by

F=dA+AnA, A=A,dz", AnA=3[A,A]dz" Ada”. (8.33)

For a gauge transformation as in (8.26)

F. — Flw=9Fug", (8.34)

or, infinitesimally,
0Fu =[NFu] =  0F%, = —f%F5. A\, (8.35)
which are homogeneous.

As a consistency check we verify the result (8.35) for 6F,, from the expression (8.32)
using (8.29) for §A%,. First

8(8,A% = 0y A% = = f%e(0,A% = 9, AD)XE = % (A% 0,0 - A%0,X°). (8.36)

Then
(f%e A%AG) oy = = be(0uA A, + A%0,X°) | (8.37)

which cancels, using (5.39), the O terms in (8.36). Furthermore
6(fabc AbuACV)’)\ = = fabc(fbdeAdu)‘e ACV + Abu fcdeAduAe)
= - (fafdffbe + facfffbe)AbuAdu)\e = _fafe ffbdAbuAdz/ ¢ 5 (8-38)

by virtue of the Jacobi identity in the form (5.43). Combining (8.36), (8.37) and (8.38)
demonstrates (8.35) once more.
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The gauge fields A%, are associated with the adjoint representation of the gauge group
G. For any adjoint field ®%t, then the corresponding covariant derivative is given by

D, ®=0,0+[A,®] = (D) =03,0"+ f% A" d°. (8.39)

This is in accord with the general form given by (8.23), with (8.22), using (5.172) for the
adjoint representation generators. Note that (8.29) can be written as 0A%, = —=(D,\)* and
for an arbitrary variation A%, from (8.32),

SF%, = (DudA,)" = (Dy3A,)". (8.40)

From the identity
(D, [Dyus Dy11 + [Dy, [Des D11 + [Dyss [Dy, Ds]])¢ = 0, (8.41)
for any representation, we have the non abelian Bianchi identity, generalising (8.19),
D,F, +D,F,,+D,F,, =0, (8.42)

where the adjoint covariant derivatives are as defined in (8.39). Alternatively with the
notation in (8.33)
dF + ANF-FAA=0. (8.43)

To construct a lagrangian leading to dynamical equations of motion which are covariant
under gauge transformations it is necessary to introduce a group invariant metric gqp = gpa,
satisfying (5.187) or equivalently

gdbfdca + gadfdcb = 07 (844)

which also implies, for finite group transformations g and with X,Y belonging to the asso-
ciated Lie algebra,
9 (9Xg7) (9Yg7)" = gup X°Y". (8.45)

If X, Y are then adjoint representation fields the definition of the adjoint covariant derivative
in (8.39) gives
9u(gap XY?) = gup((DX)*Y? + X“(D,Y)?), (8.46)

in a similar fashion to covariant derivatives in general relativity.

The simplest gauge invariant lagrangian, extending the abelian result in (8.16), is then,
as a result of the transformation properties (8.34) or (8.35), just the obvious extension of
that proposed by Yang and Mills for SU(2)

1
EYM = _z_l gabFal/«VFb'uV . (847)

It is essential that the metric be non degenerate det[gqp] # 0, and then using (8.40) requiring
the action to be stationary gives the gauge covariant dynamical equations

(DMF,,)*=0. (8.48)
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These equations, as well as (8.42) and unlike the abelian case, are non linear. As described
before a necessary consequence of gauge invariance is that if A, is a solution then so is
any gauge transform as in (8.26) and hence the time evolution of A, is arbitrary up to this
extent, only gauge equivalence classes, belonging to (8.4), have a well defined dynamics. If
the associated quantum field theory is to have a space of quantum states with positive norm
then it is also necessary that the metric g4 should be positive definite. This requires that
the gauge group G should be compact and restricted to the form exhibited in (5.194). Each
U(1) factor corresponds to a simple abelian gauge theory as described in 8.1. If there are
no U(1) factors G is semi-simple and g, is determined by the Killing form for each simple
group factor. For GG simple then by a choice of basis we may take

1
Jab =3 Oab » (8.49)

with g the gauge coupling. For G a product of simple groups then there is a separate
coupling for each simple factor, unless additional symmetries are imposed.

If the condition that the metric g4, be positive definite is relaxed then the gauge group
GG may be non compact, but there are also examples of non semi-simple Lie algebras with
a non-degenerate invariant metric. The simplest example is given by the Lie algebra iso(2)
with a central extension, which is given in (5.136). Choosing 75, = (E1, E2, J3,1) then it is
straightforward to verify that

(9ab] = ,  j arbitrary, (8.50)

o o o+
oo = O
o Lo o
S0 OO

is invariant. The Killing form only involves the matrix with the element proportional to £

non zero. Since it is necessary that ¢ # 0 for the metric to be non-degenerate the presence of

the central charge in the Lie algebra is essential. For any 3 it is easy, since det[gq] = —¢2,

to see that [g.p] has one negative eigenvalue.

An illustration of the application of identities such as (8.46) is given by the conservation
of the gauge invariant energy momentum tensor defined by

T = gop(F O FY , - Lot FooPFY Y. (8.51)
Then

8", = gup((DLF* ) FY,p + F*9 (D, F,,)" = LF*?(D, F,,)")
= gab(Dp ") = 29, F*P((DyFyo )’ = (Do Fyp)’ + (Dy Firp)?)
:gab(D“Fﬂa)a’ (852)

using the Bianchi identity (8.42). Clearly this is conserved subject to the dynamical equation
(8.48).
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8.2.1 Chern-Simons Theory

The standard gauge invariant lagrangian is provided by (8.47). However in order to obtain
a gauge invariant action, given by the integral over space-time of the lagrangian, it is only
necessary that the lagrangian is invariant up to a total derivative. This allows for additional
possibility for gauge field theories, with gauge group G a general Lie group, in three space-
time dimensions, termed Chern-Simons®® theories.

First we note that in four dimensions the Bianchi identity (8.42) may be alternatively
be written using the four dimensional antisymmetric symbol as

P D, Fyp=0. (8.53)

Apart from (8.47) there is then another similar gauge invariant and Lorentz invariant

}1 Ml gy B F (8.54)
which may be used as an additional term in the lagrangian. However the corresponding
contribution to the action is odd under x - —x or t - —t. Such a term does not alter the
dynamical equations since its variation is a total derivative and thus the variation of the
corresponding term in the action vanishes. To show this under arbitrary variations of the
gauge field we use (8.40) and (8.53) to give

1
51 e o B FOy = 7P o (Dud Ay ) Fyp = 0, (67 9o A, Fy ) . (8.55)
This allows us to write 1
1 M7l g W Flyy = 0,0 (8.56)
where
wh = el o (A% 0, A" + 1 fha A% A AY) (8.57)

since this has the variation
St = "7l gy (8 A% 0y A% + A% 0,6 A, + 4.4 6 A%, A%, AL)
= &7 9o O (A% AY,) + 7P gy 0 A%, (20, A% + fea A AY)
= £M7P gy Dy (0 A% A%) + €M77P g A% Yy (8.58)
using that gqpf%q is totally antisymmetric as a consequence of (8.44). The result is then in

agreement with (8.55).

If the variation is a gauge transformation so that

A, ’ A = wh ’ W', (8.59)

then since (8.56) is gauge invariant we must require

Ot = dw'. (8.60)

55Shiing-Shen Chern, 1911-2004, Chinese, American after 1960. James Harris Simons, 1938-, American.
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This necessary condition may be verified for an infinitesimal gauge transformation by setting
JA%, = —(D,N\)* in (8.58) which then gives, using the Bianchi identity (8.53) again,
dwt = =gy 8V((D(,)\)aAbp) -e"%gu (D,,)\)an(,p
= e"7Pgay 0, (A" (Dy A)Y, = N*F*, )
= — " g,,0,( N9, A%). (8.61)

Hence it is evident that the result in (8.61) satisfies

80wt = 0. (8.62)

In three dimensions the identities for w* may be applied to
Los =77 gap(A% 0, A% + £ fhg A% AGAY) (8.63)

which defines the Chern-Simons lagrangian for gauge fields. For an infinitesimal gauge
transformation, by virtue of (8.61), Lcg becomes a total derivative since

§A% = ~(D,N) = §Log=-€""ga 0, (N0, A%), (8.64)

so that the corresponding action is invariant. Under a general variation

5 f Bz Log = f A3 £77P go, A% Y, (8.65)

so that the dynamical equations are
F, =0, (8.66)

so the connection A, is ‘flat’ since the associated curvature is zero (Cherns-Simons theory is
thus similar to three dimensional pure gravity where the Einstein equations require that the
Riemann curvature tensor vanishes). In a Chern-Simons theory there are no perturbative
degrees of freedom, as in the case of Yang-Mills theory, but topological considerations play
a crucial role.

Topology also becomes relevant as the Chern-Simons action is not necessarily invariant
under all gauge transformations if they belong to topological classes which cannot be con-
tinuously connected to the identity. To discuss this further it is much more natural again
to use the language of forms, expressing all results in terms of A(x) = A%, (x)t,dz" a Lie
algebra matrix valued connection one-form, [t,,t,] = f%spte as in (5.60), and replacing the
group invariant scalar product by the matrix trace. For any set of such Lie algebra matrices
{X1,...,X,} the trace tr(X;...X,) is invariant under the action of adjoint group trans-
formations X, - ¢X,¢g~! for all r. Since the wedge product is associative and the trace is
invariant under cyclic permutations we have

tr( A nA)=tr((An-nA)AA) = (=)"r(AA (A A A))
n n—-1 n—-1

=0 for n even. (8.67)
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The Chern-Simons theory is then defined in terms of the three-form
w=tr(AANdA+2ANANA)=tr(ANF-1ANANA), (8.68)
with the two-form curvature F' as in (8.33). It is easy to see that
dw=tr(dArdA+2dANANA)=tr(FAF), (8.69)
which is equivalent to (8.56) and (8.57). For a finite gauge transformation
A= gAgt +gdg7t, F'=gFg™, (8.70)
so that, from (8.68),

Ww=w+ tr(dg_lg AN(F-AnA))- tr(dg_lg Andgtg A A)

- %tr(dg_lg/\dg_lg/\dg_lg). (8.71)

Using
dg'g=-g7'dg,  d(g'dg)=-g 'dgrg 'dy, (8.72)

we get,
W =w+ dtr(g_ldg NA)+ %tr(g_ldg A g tdg A g_ldg) . (8.73)

In this discussion ¢~'dg is unchanged under g — gog, for any fixed gg, and so defines a
left invariant one-form. If b" are coordinates on the associated group manifold Mg then
g 1(b)dg(b) = w(b)t, where w(b) are the one forms defined in the general analysis of Lie
groups in (5.48).

Since, using (8.72),
dtr(g_ldg Agtdg A g_ldg) = —tr(g_ldg Agtdgagidga g_ldg) =0, (8.74)

by virtue (8.67), we have
dw' = dw, (8.75)

which is equivalent to (8.60). However although tr(g_ldg A g tdg A g‘ldg) is therefore a
closed three-form it need not be exact so that its integration over a three manifold M3 may
not vanish, in which case we would have

/ w'#[ w, (8.76)
M3 M3

for some g(x). The Cherns-Simons action is not then gauge invariant for such gauge trans-
formations g.

To discuss
I-= fM %tr(g_ldg A g tdg A g_ldg) , (8.77)
3
we note that for a variation of g, since
5(g~'dg) =g 'd(6g99 ") g, (8.78)
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then
) % tr(g_ldg Agtdg A g_ldg) = tr(d(ég g HAadggtadg g_l)
:dtr(6gg_1 Adgg™ /\dgg_l)7 (8.79)
since d(dgg™ Adgg™!) = —d?(dgg~') = 0. Hence, for arbitrary smooth variations dg,
51=0, (8.80)
so that I is a topological invariant, only when g(x) can be continuously transformed to the
identity must I = 0.
If we consider g(0) € SU(2) with coordinates 6", r = 1,2,3 then
%tr(g_ldg/\g_ldg/\g_ldg) =p(0)d%0, (8.81)

The integration measure in (8.81) is defined in terms of the left invariant Lie algebra one
forms so that for g(0") = gog(0) we have

p(0")d30" = p(0)d36. (8.82)

Up to a sign, depending just on the sign of det[d'"/00°], this is identical with the re-
quirements for an invariant integration measure described in section 5.7. To check the
normalisation we assume that near the origin, 8 ~ 0, then g(0) ~ I +io -0 and hence

%tr(gildg Agtdg A gildg) ~ %z’?’ tr(cr -d@ Ao -dO Ao - d0)
=2¢;j,d0° AdO) AdO" =4d%0, (8.83)
assuming (5.21) and standard formulae for the Pauli matrices in (3.20) with (3.22). Thus

p(0) = 4 and the results for the group integration volume for SU(2) in (5.155) then imply,
integrating over Mgy (2) > S3,

/M %tr(g‘ldg A g tdg A g_ldg) = 82, (8.84)
sU(2)

In general the topological invariant defined by (8.77), for a compact 3-manifold M3,
corresponds to the index of the map defined by g(z) from M3 to a subgroup SU(2) c G,
i.e. the number of times the map covers the SU(2) subgroup for x € M3. The result (8.84)
then requires that in general

I=8n’n for nez. (8.85)

In the functional integral approach to quantum field theories the action only appears in
the form e*. In consequence S need only be defined up to integer multiples of 27. Hence
despite the fact that the action is not invariant under all gauge transformations a well
defined quantum gauge Chern-Simons theory is obtained, on a compact 3-manifold M3, by
employing as the action

Scs=£sttr(A/\dA+%A/\A/\A), keZ, (8.86)

so that, unlike Yang-Mills theory, the coupling is quantised. There is no requirement for k
to be positive, the cubic terms become effectively small, and the theory is weakly coupled,
when £ is large.
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8.3 Gauge Invariants and Wilson Loops

Only gauge invariant quantities have any significance in gauge field theories. Although
it is necessary in non abelian gauge theories to solve the dynamical equations for gauge
dependent fields, or in a quantum theory, to integrate over the gauge fields, only for gauge
invariants is a well defined calculational result obtained. For abelian gauge theories this is
a much less significant issue. The classical dynamical equations only involve F},,, which is
itself gauge invariant, (8.14). However even in this case the associated quantum field theory,
QED, requires a much more careful treatment of gauge issues.

For a non abelian gauge theory F),, = F'%,t, is a matrix belonging to a Lie algebra
representation for the gauge group which transforms homogeneously under gauge transfor-
mations as in (8.34). The same transformation properties further apply to products of F’s,
at the same space-time point, and also to the gauge covariant derivatives Dy, ... Dq, Fj,.
Since [Dq, DglFu = [Fug, Fju] the indices a1, ..., a, may be symmetrised to avoid linear
dependencies. A natural set of gauge invariants, for pure gauge theories, is then provided by
the matrix traces of products of F’s, with arbitrarily many symmetrised covariant deriva-
tives, at the same point,

tr(Dayy - Doy, Frum Do -+ Do,y Fugvs -+ Doy -+ Doy, Fuw,) - (8.87)

Such matrix traces may also be further restricted to a trace over a symmetrised product
of the Lie algebra matrices, since any commutator may be simplified by applying the Lie
algebra commutation relations, and also to just one of the s invariants, in the above example,
related by cyclic permutation as the traces satisfy tr(X ... Xs) = tr(Xs X1 ... Xs-1). If the
gauge group G has no U(1) factors then tr(¢,) = 0. The simplest example of such an
invariant then involves just two F’s, which include the energy momentum tensor as shown
in (8.51). In general there are also derivative relations since

8,utr(X1Xs):Ztr(X1D,qu Xs) (888)
i=1

However, depending on the gauge group, the traces in (8.87) are not independent for
arbitrary products of F’s, even when no derivatives are involved. To show this we may
consider the identity

det(1 - X) = (=X (8.89)

which is easy to demonstrate, for arbitrary diagonaliseable matrices X, since both sides
depend only on the eigenvalues of X and the exponential converts the sum over eigenvalues
provided by the trace into a product which gives the determinant. Expanding the right
hand side gives

det(1 - X) = e~ et t(X /7
= L= () + 3 (r(X)? - (X)) = § (8(X)° =B (X)ir(X?) + 2(X)) 4. (8.90)

If X is a N x N matrix then det(] - X) is at most O(X"V) so that terms which are of higher
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order on the right hand side must vanish identically®®. If N =2 this gives the relation
tr(X?) = %tr(X)tr(XQ) - %tr(X)?’, (8.91)
and if N =3, and also we require tr(X) = 0, the relevant identity becomes
tr(X*) = Ler(X?)2. (8.92)
In general tr(X"™) when n > N is expressible in terms of products of tr(X?®) for s < N.

For G = SU(N) and taking ¢, to belong to the fundamental representation these results
are directly applicable to simplifying symmetrised traces appearing in (8.87) since the results
for tr(X™) are equivalent to relations for tr(t(,, ... tqy))-

8.3.1 Wilson Loops

The gauge field A, is a connection introduced to ensure that derivatives of gauge dependent
fields transform covariantly under gauge transformations. It may be used, as with connec-
tions in differential geometry, to define ‘parallel transport’ of gauge dependent fields along a
path in space-time between two points, infinitesimally for z — x +dx this gives dz" D, ¢(x),
where ¢ is a field belonging to a representation space for the gauge group G and D, is the
gauge covariant derivative for this representation. Any continuous path I';, linking the
point y to x may be parameterised by z*(t) where z*(0) = y*,2*(1) = z#. For all such
paths there is an associated element of the gauge group G, as in (8.2), which is obtained by
integrating along the path I'; ,. For the particular matrix representation R of G determined
by ¢ this group element corresponds to P(I'; ) € R where P(I'y,)¢(y) transforms under
local gauge transformations g(x) € R belonging to G, while ¢(y) transforms as in (8.5) for
g(y) belonging to G,,.

For simplicity we consider an abelian gauge theory first. In this case P(I'; ) € U(1) and
under gauge transformations transforms as a local field at z and its conjugate at y. For a
representation specified by a charge ¢ as in (8.5), this is defined in terms of the differential
equation

o
(% - qu#(t)A#(x(t)))P(tat,) = 0’ P(tat) = 1’ it = ddit ) (893)
which has a solution,
P(t,t) = o1 Jirdr @t (1) Ap (7)) (8.94)
We then require '
P(T4y) = P(1,0) = /v, 8" 4@ ¢ 71y (8.95)

*Equivalently if F(z) =det(1 -2X) =1+ YN, a,(X)2" then

7F/(Z):r ! :mzrr r+1
o) tr(X(1-2X)7") ; tr(X™),

and expanding the left hand side determines tr(X™) for all n solely in terms of a,, r = 1,... N which are
also expressible in terms of tr(X™) for n < N.
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which is independent of the particular parameterisation of the path I'; ,. Under the abelian
gauge transformation in (8.11)

P(Fx,y) — P(sz,y) eitIfrx,ydwaua(w) - glaa(@) P(F:B,y) e a(y) ’ (8.96)
ela

demonstrating that, for ¢ transforming under gauge transformations as in (8.5),

P(Tey)8(y) —> 1@ P, )0 (y) . (8.97)

If " is a closed path, with a parameterisation z*(¢) such that z#(1) = z#(0) = 2" € T,
then I' =T'; , for any  on I'. It is evident from (8.96) that P(I") is gauge invariant. In
this abelian case P(I') may be expressed just in terms of the gauge invariant curvature in
(8.14) using Stokes’ theorem

P(F) - eifﬂgr dx“A#(z) = e%iqfs dSWFl“’(I) s (8.98)

for S any surface with boundary I' and dS*” = —-dS"* the orientated surface area element
(in three dimensions the identity is §.dx-A = [(dS-B, B =V x A with dS; = —EmdeJk)

For the non abelian case (8.93) generalises to a matrix equation

(]l i A(t))PW') 0, AW =it 20), PED=1,  (3.99)

where A(t) is a matrix belonging to the Lie algebra for a representation R of G. (8.99) may
also be expressed in an equivalent integral form

Pty =1~ [ "dr A(r)P(r 1) (8.100)

Solving this iteratively gives

Pty =1+ (- 1)"f dtlf Aty f “dt, A1) A(ts) ... At)

n>1
“1+ Y (- 1) - f dt, T{A(t)A(ts) ... A(tn)} . (8.101)
n>1
where 7 denotes that the non commuting, for differing ¢, A(t) are t-ordered so that
ALY, t>t,
TLA(t)A(t 8.102
{ (DAC )} { A(HA(t), t<t'. ( )
The final expression can be simply written as a 7T -ordered exponential
P(t,t') = T{e Judr A} (8.103)
The corresponding non abelian generalisation of (8.95) is then
P(Ty,) = P(1,0) = P{e‘frm,yd"”” A eR, (8.104)

218



with P denoting path-ordering along the path I' (this is equivalent to t-ordering with the
particular parameterisation x*(t)). These satisfy the group properties

P(Tyy) P(Tyz) = P(TayoTy.:), (8.105)
where I'; , oI'y . denotes path composition, and, if R is a unitary representation

P(Tyy) ™" = P(I'y) = P2y, (8.106)
with F;ﬁx the inverse path to I'y .

For a gauge transformation as in (8.26), g(z) € R, then in (8.99)

A(t) > gAMB)g(®) " —g()g(®), g(t) =g(z(t)) = P(t) > g(t)P(t,t)g(t') ",
(8.107)
and hence
P(Tzy) — 9(2)P(Tay) 9(y) ™ (8.108)

For I' =T'; , a closed path then we may obtain a gauge invariant by taking the trace
W(T) =tr(P(Te))- (8.109)

W (') is a Wilson®" loop. It depends on the path I" and also on the particular representation
R of the gauge group. Wilson loops form a natural, but over complete, set of non local
gauge invariants for any non abelian gauge theory. They satisfy rather non trivial identities
reflecting the particular representation and gauge group. Subject to these the gauge field can
be reconstructed from Wilson loops for arbitrary closed paths up to a gauge transformation.
The associated gauge groups elements for paths connecting two points, as given in (8.104),
may also be used to construct gauge invariants involving local gauge dependent fields at
different points. For the field ¢, transforming as in (8.5), gS(x)TP(Fx,y)qﬁ(y) is such a
gauge invariant, assuming the gauge transformation g is unitary so that (8.5) also implies

¢(2)" > o(x)g(x)™".

If a closed loop T is shrunk to a point then the Wilson loop W (I') can be expanded in
terms of local gauge invariants, of the form shown in (8.87), at this point. As an illustration
we consider a rectangular closed path with the associated Wilson loop

W(D) = tr(P(Fx,erbej ) P(Fx+bej,x+ae¢+bej) P(Fx+aei+bej,m+aei) P(Fx+aei,:c)) 5 (8110)

where here I' are all straight line paths and e;,e; are two orthogonal unit vectors. To
evaluate W(O) as a,b — 0 it is convenient to use operators x”,d,, with the commutation
relations

[x",%"] =0, [0,.0,]=0, [0,.%"] = 6,7, (8.111)

which have a representation, acting on vectors |z), = € R*, where

)y, Oulr) = -9,lr). (8.112)

5TKenneth Geddes Wilson, 1936-, American. Nobel prize 1982.
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In terms of these operators, since X” ¢~te" D = gtet Dy (X +te”),
e Pulz) = [2(0) P(Caye) s Du= 0+ Au(®), 2"(t) =" +te”, (8.113)

which defines P(I'; () ;) for the straight line path I'y(;) , from = to x(t), with P(T'; ) = I.
To verify that P(T';) ) agrees with (8.103) we note that

0

ey = e Dy et D) = (% (1)) = (1)) e“Am(t)))P(rx(t),x) L (8119)

using (8.112) as well as (8.113). It is then evident that (8.114) reduces to

0
a P(Fz(t),x) = _eMA,LL(x(t)) P(Fx(t),m) ) (8115)

which is identical to (8.93). For the rectangular closed path in (8.110)

|$> P(F$,$+be]~)P(Fz+bej,m+aei+bej)P(Fx+aei+bej-,;c+ae,-)P(Fx+aei,x)
_ ebDj 6aﬁi e—bbj 6_aﬁi|$>
— eab [ﬁj,ﬁi]fécﬂb[[f)j,f)i],ﬁi]H%abQ [bj,[bj,bi]]+... |x>

— |.'1:> e*abFij({L‘)*%CLQbDiFij($)*%(lb2Dj F1J($)+ , (8116)

using the Baker Cambell Hausdorff formula described in 5.4.2 and [D;, ﬁj] = Fj;j(%). Hence,
for a N-dimensional representation with tr(¢,) = 0, the leading approximation to (8.110) is
just
W(D) =N+ %a2b2 (1 + %a@z + %baj + %a28i2 + %b28j2 + }Lab&a]) tI’(FijFij)
- 2—14a462 tI‘(DiFZ'jDiFij) - ia2b4 tr(DjFiijFij)
- %a3b3 tr(FijFZ-jFij) +..., nosumson i,j. (8.117)

For completeness we also consider how P(I';,) changes under variations in the path
I'yy. For this purpose the path I' is now specified by z*(t,s), depending continuously on
the additional variable s, which includes possible variations in the end points at ¢t =0,1. If
we define t, s covariant derivatives on these paths by

0 0 Oxt Oxt
D=1 g +Ai(t), Ds=1 75 +As(t), Au(t) = WA#(:n), As(t) = EA#(:L‘), (8.118)

leaving the dependence on s implicit, then

oxt Ox¥
ot 0Os

With the definitions in (8.118), (8.99) becomes D;P(t) = 0. Acting with Dy gives

[Di, D] = F(t) = P (). (8.119)

D;D,P(t,t") = F(t)P(t,t'), DP(t,t) = Ag(t), (8.120)
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which has a straightforward solution giving

%P(LO) + A,(1)P(1,0) - P(1,0)A.(0) = [Oldt P(1,)F(1)P(L,0).

The result (8.121) may be recast as
orP(Lay) + 62" Ay () P(Tay) = P(Tay) 0y” Au(y)
= [ et P(Te) Fu(2)60"(2) P(T-,),
Pz
where
Dpy=Tg.00., for zel'y,.

For a Wilson loop
orW(T) = frda}“ tr(FW(:E)(S:B”(x) P(Fx,x)).

(8.121)

(8.122)

(8.123)

(8.124)

For a pure Chern-Simons theory then, as a consequence of the dynamical equation (8.66),
there are no local gauge invariants and also Wilson loops are invariant under smooth changes
of the loop path. The Wilson loop W(I') # N only if it is not contractable to a point.
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9 Integrations over Spaces Modulo Group Transformations

In a functional integration approach to quantum gauge field theories it is necessary to
integrate over the non trivial space of gauge fields modulo gauge transformations, as in (8.4)
with the definitions (8.1) and (8.2). This often becomes rather involved with somewhat
formal manipulations of functional integrals but the essential ideas can be illustrated in
terms of well defined finite dimensional integrals.

To this end we consider n-dimensional integrals of the form

/Rnd"x f(x), (9.1)

for classes of functions f which are invariant under group transformations belonging to a
group G,
f(z)=f(29), for x— 27 forall geG. (9.2)
g

Necessarily we require
-1
(291)9 = 9192 (@99 =z, (9.3)

and also we assume, under the change of variable x — 29,
d"z=d"a". (9.4)

The condition (9.4) is an essential condition on the integration measure in (9.1), which is
here assumed for simplicity to be the standard translation invariant measure on R”. If the
group transformation g acts linearly on x then it is necessary that G c Si(n,R) x T},, which
contains the n-dimensional translation group 75,.

For any x the action of the group G generates the orbit Orb(z) and those group elements
which leave x invariant define the stability group H,,

Orb(x) = {29}, H,={h:a"=2}. (9.5)
Clearly two points on the same orbit have isomorphic stability groups since
Hyo=g 'Hyg~H,cG. (9.6)

We further require that for arbitrary x, except perhaps for a lower dimension subspace, the
stability groups are isomorphic so that H, ~ H. Defining the manifold M to be formed by
the equivalence classes [x] = {x/ ~}, where 29 ~ z, or equivalently by the orbits Orb(x),
then M ~R"/(G/H). We here assume that G, and also in general H, are Lie groups, and
further that H is compact. In this case M has a dimension which is less than n. Although
R™ is topologically trivial, M may well have a non trivial topology.

In the integral (9.1), with a G-invariant function f, the integration may then be reduced
to a lower dimensional integration over M, by factoring off the invariant integration over
G. To achieve this we introduce ‘gauge-fixing functions’ P(xz) on R™ such that,

for all z € R" then P(z?) =0 for some g€ G,
if P(29)=0then P(z¢!) =0 = g=heH, x =x0. (9.7)
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In consequence the independent functions P(z) € R” where # = dim G—dim H. The solutions

of the gauge fixing condition may be parameterised in terms of coordinates ", r = 1,...,n-n,
so that
P(20(0))=0 = 6" coordinateson M, dimM=n-7n. (9.8)

For any P(x) an associated function A(z) is defined by integrating over the G-invariant
measure, as discussed in 5.7, according to

[dn(9) 8 (Pa) A) = 1. (9.9)
Since by construction dp(g) = dp(g’g) then it is easy to see that
A(z?)=A(z) forall geG. (9.10)

Using (9.9) in (9.1), and interchanging orders of integration, gives

[as@ = [dpg) [ d" 5" (P)) A@) ()
= [ doto) [ d"a? 5 (Pa) M) f(a?)
- /de(g) [Rnd”x 5 (P(x)) A(z) f(z). (9.11)

using the invariance conditions (9.2), (9.4) and (9.10), and in the last line just changing the
integration variable from z9 to x. For integration over M we then have a measure, which
is expressible in terms of the coordinates 6", given by

du(6) =d"x 6"(P(x)) A(x). (9.12)

To determine A(x) in (9.9) then, assuming (9.7), if
g(a,h) =exp(a)h, aeglh, (9.13)
we define a linear operator D, which may depend on zg, such that
2" = 20+ D(zo)or, for aw0, D(xp):g/b - R". (9.14)

If {T,} is a basis for g/h (if g has a non degenerate Killing form « then x(h,T;) = 0 for all
a and we may write g = h @ g/h) then

o = alT; (9.15)
and, with the decomposition in (9.13),
ﬁ ~ ~
dp(g) ~ [[da®dpu (h) for a’~0, (9.16)
a=-1

for dpg(h) the invariant integration measure on H. For x near xy we define the linear
operator P’ by

P(zo+y) =P'(x0)y for y~0,  P'(x0):R"—>R". (9.17)

223



Then in (9.9), with (9.16),

[Lan(9) 8 (Pa) = [ dp(e) 8*(P(ai)) = Vir [ d"a 8*(P'(20)D(x0)a)

1
-V | det P’ (z0)D(zo)|’ Vi = fHde(h)- (9.18)
Hence in (9.9)
A@) = o |det P'ao)D(ao)| for = (9.19)
H

In a quantum gauge field theory context det P’'(xq)D(zg) is the Faddeev-Popov’® deter-
minant. The determinant is non vanishing except at points xy such that P(x¢’) = 0 has
solutions for g ~ e and g ¢ H and the gauge fixing condition P(x) = 0 does not sufficiently
restrict g. The resulting measure, since

P(z)=0 =  z=xz(0,0) =009, (9.20)

from (9.12) becomes, with a change of variables z - 0, «,

1 R
du(0) = o d"z 6" (P(z))|det M ()|, M(0) = P'(x0(0))D'(x0(0)). (9.21)
H
Note that A X
6”(P(x(9, a))) |det M(G)‘ =0"(a), (9.22)
and therefore the measure over M may also be expressed in terms of the Jacobian from 6, «
to x since e
. x Ox
dp(0) =d" "0 |det| —, — : 9.23
(o) |5 oe]| (9.23

With these results, for G compact, (9.11) gives

fR A"z f(x) = Vg fR A"z 5"(P(2)) Ax) f(x) = Vo fM du(0) f(z0(0)). (9.24)

As an extension we consider the situation when there is a discrete group W, formed by
transformations 6 — 69, such that

W = {gi : 20(0%) = 20(0)°“"), g(:) € G} (9.25)

It follows that M (09) = M(#) and du(69) = du(6). Since the stability group H leaves
xo invariant ¢g(g;) is not unique, hence in general it is sufficient that g(g;)9(g;) = 9(gig;)h
for h e H. In many cases it is possible to restrict the coordinates {6"} so that W becomes
trivial but it is also often natural not to impose such constraints on the 8™’s and to divide
(9.21) by |W] to remove multiple counting so that

1
dul®) = (W Vh

58Ludvig Dmitrievich Faddeev, 1934-2017, Russian. Viktor Nikolaevich Popov, 1937-1994, Russian.

d"z 6" (P(z))|det M(0)

, (9.26)
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9.1 Integrals over Spheres

As a first illustration of these methods we consider examples where the group G is one of
the compact matrix groups SO(n), U(n) or Sp(n) and the orbits under the action of group
transformations are spheres.

For the basic integral over = € R™ in (9.1), where z = (z*,...,2"), we then consider
f(z) = F(z?), (9.27)

where 22 = 2%z is the usual flat Euclidean metric. In this case we take G' = SO(n) which
acts as usual x - 2’ = Rz, regarding x here as an n-component column vector, for any

R
R € SO(n). Since det R =1 of course d"z’ = d"x. The orbits under the action of SO(n) are
all z with 22 = 72 fixed and so are spheres ™! for radii 7. A representative point on any
such sphere may be chosen by restricting to the intersection with the positive 1-axis or

z0=7(1,0,...,0,0), r>0. (9.28)

In this case the stability group, for all » > 0, H ~ SO(n — 1) since matrices leaving x( in
(9.28) invariant have the form

R(R) = ((1) ]%) ., ReSO(n-1). (9.29)

Note that dim SO(n) =
n — 1, and therefore n —

sn(n—1) so that in this example 7 = dim SO(n) - dim SO(n-1) =
n. =1 corresponding to the single parameter r.

Corresponding to the choice (9.28) the corresponding gauge fixing condition, correspond-
ing to 0" (P(x)), is

F(x) = 0(z") ﬁ 5(z'). (9.30)

The condition z' > 0 may be omitted but then there is a residual group W = Zy correspond-
ing to reflections z' - —x!. For the generators of SO(n) given by (6.31) we have

Saxo=r(0,..., 1 ,...,0), s=2,...,n, (9.31)
—
s’th place

so that in (9.13) we may take

n

o= Z osSs1 (9.32)
s=2

so that
exp(a)zg =r(1l,ae,...,a,) for a=~0. (9.33)

For the measure we assume a normalisation such that

dpsom)(R) » A" adpgo(m-1)(R) for R=exp(a)R(R), a~0, (9.34)
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where R(R) is given in (9.29). With the gauge fixing function in (9.30)

e 1
fSO( P psom)(R) F(Rz) = Vso(n- 1)/(i aH5(Oés|$ ) = VSO(n—I)W' (9.35)

Hence 1
A(z) = ——— "1, =12 r>0. (9.36)
Vso(n-1)

With this (9.24) becomes
n 2\ _ n _ SO(") n—1
d"z F(z%) = Vsom) [ 4"z F(x)A(z) F(z?) = “dr F(r?). (9.37)
R" R" Vso(n-1)

Of course this is just the same result as obtained by the usual separation of angular variables
for functions depending on the radial coordinate r.

For a special case

Vso(n Vson
Az ¢ = pan = 590 f dr pler? = 50 %F(%n), (9.38)
R™ Vson-1) Vso(n-1)
giving
Vso(n 23"
S0 _g - 7T12 , (9.39)
Vso(n-1) I'(5n)
where S, is the volume of S"!. Since Vso(z) = 2m, or Vgo(1) = 1, in general
Ln(n+1)
T
Vsom) =2"" =71 - (9.40)
™ 1 T(37)

For the corresponding extension to the complex case we consider integrals over C* ~ R?",

of real dimension 2n, with coordinates Z = (z1,...,2,), 2z € C. The analogous integrals are
then .
f@ Az F(ZZ),  2Z=Y |l (9.41)
" i=1
and where "
a*"z =] %, d*z =dxdy for z=xz+iy. (9.42)
i=1

In this case we may take G = U(n) c O(2n) where the transformations act Z > UZ for

U € U(n) so that ZZ is invariant, as is also d?®Z. As in the discussion for SO(n) we may
take on each orbit
Zy=7(1,0,...,0,0), r>0. (9.43)

The stability group H ~ U(n — 1) corresponding to matrices

U0 = (0 8) OecU(n-1). (9.44)
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In this case dim U(n) = n? so that A = dimU(n) —dimU(n—-1) = 2n - 1. The orbits are just

specified again by the single variable r.

Corresponding to (9.43) the gauge fixing condition becomes
F(Z)=0(Rez)dé(Imzy) ﬁéQ(zi) , 6%(2) = 0(x)d(y), z=x+1iy.
i=2
In terms of the generators defined in (6.2) we let
a:ia1R11+i(asRsl—a;Rls), a1eR, a;eC, s>2.
5=2

Hence
exp(a)Zy =r(1+icg,a2,...,Qn), a~0,

and we take

dpy(ny(U) » dan Ty d®as dpy oy (U) - for U =exp()U(U), aw0.

With these results 1

f dpyny(U) F(UZ) = Viy(n-1) PEEk

which implies

A(Z) = L r2nt ZZ=r%, r>0.
VU(n—l)

Finally
VU(n)

(9.45)

(9.46)

(9.47)

(9.48)

(9.49)

(9.50)

N7 F(22) Vo [ 42 F(2)AZ) P(22) = -2 [“dr i ().
[ 2 P(22) =V [ a2 F(2)M(2) F(22) = 2 [Tar R G

U(n-1)

Corresponding to (9.39), (9.51) requires

Taking Vi7(1) = 2m we have, with our normalisation,

1
T2

i T()

n(n+1)

VU(n) ="

Since U(n) ~ SU(n) xU(1)/Z,,

2
Vo) = . Vst (n) -

(9.51)

(9.52)

(9.53)

(9.54)

A very similar discussion applies in terms of quaternionic numbers which are relevant

for Sp(n). For Q = (q1,-..,q,) € H" the relevant integrals are
[a"QFQQ).  QQ-Ylul.
i=1
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and where

d*"Q = I d4q; d*¢=dzdydudv for z=z+iy+ju+kv. (9.56)
i=1

QQ is invariant under Q v MQ@ for M € Sp(n) c SO(4n), regarded as n x n quaternionic

unitary matrices M satisfying (1.121). As before we choose
Qo =7(1,0,...,0,0),  r>0. (9.57)

The stability group H :ASp(n - 1) corresponding to quaternionic matrices where M is
expressible in terms of M e Sp(n - 1) in an identical fashion to (9.44). We now have
dim Sp(n) =n(2n+1) so that n = dim Sp(n) —dim Sp(n—-1) =4n - 1.

The associated gauge fixing condition becomes

F(Q) =60(Re q1)53(1m q1) 1154(%) , 54(q) =0(z)0(y)o(u)d(v), g=z+iy+iu+iv.

(9.58)
In terms of the generators defined in (6.2) we let
a=a1R11+Z(asR51—a_sRls), as€H, Reap=0. (9.59)
§=2
and R
dpSp(n)(M) N d3011 HZ:Q d4a8 dpSp(n—l)(M) ax(0. (960)
Hence we find )
A(Q) = ——— it QQ =71, r>0. (9.61)
Vsp(n-1)

The integral in (9.55) becomes

4@ F(Q@) = Vg [07Q F(@) A@Q) F@QQ) = o2 [“ar i (r2),

Vsp(n-1)
(9.62)
and corresponding to (9.39), (9.62) requires
Vsp(n
S _g, (9.63)
Vsp(n-1)

Since Sp(1) = {q:|g|*> = 1}, with the group property depending on |q1¢2| = |q1] g2/, the group
manifold is just S® and

Vp(1) = f d*qd(lgl - 1) = S = 2%, (9.64)
just as in (5.155). Hence
Vopim = 2" — (9.65)

The results for the group volumes in (9.40), (9.53) and (9.65) depend on the conven-
tions adopted in the normalisation of the group invariant integration measure which are
here determined by (9.34), (9.48) and (9.60) in conjunction with (9.32), (9.46) and (9.59)
respectively.
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9.2 Integrals over Symmetric and Hermitian Matrices

A class of finite dimensional group invariant integrals which are rather more similar to
gauge theories are those which involve integrals over real symmetric or complex hermitian
matrices.

For the real case for n x n symmetric matrices X the relevant integrals are of the form
fd%"“”l)X f(X), X=XT, a"Ox -T]dx, [] dXi, (9.66)
i=1 1<i<j<n
and we assume the invariance

f(X)=f(RXR™Y), ReSO(n). (9.67)

The measure dz"("*1) X is invariant under X - RXR™. A standard result in the discussion
of matrices is that any symmetric matrix such as X may be diagonalised so that

M ... 0
RXR‘'=A=|: -~ ], (9.68)
0 ... Mo

where ); are the eigenvalues of X. If {);} are all different there is no continuous Lie
subgroup of SO(n) such that RAR™ = A since

dim{X : X = X"} = dim SO(n) = $n(n+1) - in(n-1) =n, (9.69)

corresponding to the number of independent \;. The orbits of X under the action of SO(n)
are then determined by the eigenvalues {\;}. For any SO(n) invariant function as in (9.67)
we may write

FXO)=F), A=A, ). (9.70)

However there is a discrete stability group for A. The diagonal matrices corresponding
to reflections in the i-direction

(9.71)
oo 0
Ri=i| : 1_11 : |eom), i=1,....n, RE=1I,.  (9.72)
0 oo, Lo
generate the discrete group
{Rm...an =R" ... Rn—lan ta; =0, 1} = ZQXH s (9'73)
such that for any element
Ral...anARal...an_l =A. (974)
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Furthermore for any permutation o € S,, there are corresponding matrices R, € O(n), such
that (R, )ijj = Z(;)- The matrices { R, } form a faithful representation of S, and

AO’(I) PP 0
RAR =M, =| : (9.75)
0 PR )\U(TL)
For the permutation (ii+1) the associated matrix is

i (9.76)

5O 0
Rijiv1) =1 08 ) i=1,...,n-1, (9.77)

0 il 59

which may be used to determine R, for any o by group multiplication. Since R,R;R, ' =
Rg (i) the groups generated by permutations and reflections may be identified as the semi-
direct product S, x Z3*". However det R, = P, = +1, with P, defined in (7.85), and also
det Ry, .q, = (=1)%i%. Restricting to the subgroup belonging to SO(n), having determinant
one, we then take for the group W, as defined in (9.25),

W= (S, xZ5")/Zs W =2""1n!. (9.78)

It is possible to restrict W to ngn_l, formed by Ry, . 4, With };a; even, by requiring that
the eigenvalues in (9.68) are ordered so that A; < A\;11. However the choice of W in (9.78)
is generally more convenient.

Taking Xy = A, as in (9.68), the corresponding gauge fixing condition is

F(X)= J] 6(Xy). (9.79)
1<i<j<n
For a rotation
R(a) = exp(a), a=-al, (9.80)

and the group invariant integration is then assumed to be normalised such that, for R as
in (9.80),
dpsomy(R(a))~ [] dayj, ar0. (9.81)

1<i<j<n

With these assumptions, applying (9.9),

A(IX—) = /SO(n()ipSO(n)(R) f(RXR_l) = 151’1:]['gn f dozij 5(0%‘]‘()\]' — )\Z)) , (9.82)
so that ) )
AX) =AW for AN = 1 [T i) (9.83)
<i<j<n
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The resulting SO(n) invariant integration over symmetric matrices becomes
[ armex p(x) - Tg/(‘”) [ @ X FOAX) £(X)
Vso(n)

= L CYINCVIFIPME (9.84)

Since the normalisations chosen in (9.80) and (9.81) are compatible with those assumed
previously we may use (9.40) for Vgo(y,)-

For the particular example

FX) =e2mm (X g (x?) = ZX“ 2 3 Xi2= ZA (9.85)
1<i<j<n
then
1 1 2 1, (T in(n+1)
[ agntmnx () _gin (I . (9.86)
K

Using (9.40) this defines a normalised probability measure for the eigenvalues for a Gaussian
ensemble of symmetric real matrices

ln(n+1)

d:u()\)s mmetric matrices = d>\ |A()\)| _7’{2’ . (9.87)
’ T 9dn e, r(1+ L) q

There is a corresponding discussion for complex hermitian n x n matrices when the
integrals are of the form

fd"2X f(X), X=X, dVX = HdX” [] d*X Xij, (9.88)
=1 1<i<j<n
where f satisfies
f(X)=fUXU™Y), UeU(n). (9.89)

Just as before hermitian matrices may be diagonalised
UXU ' =A, (9.90)

where the diagonal elements of A are the eigenvalues of X as in (9.68). In this case there
is a non trivial continuous subgroup of U(n) leaving A invariant formed by the diagonal
matrices

e 0
O R 0.91)
0 e
and hence we may identify
H=U(1)™. (9.92)

In addition we may identify W = S,, formed by {R,} c U(n) which permute the eigenvalues
in A.
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The gauge fixing condition restricting X to diagonal form is now

F(x)= [ &Xy). (9.93)

1<i<j<n
In this case we may write for arbitrary U € U(n),
Ula,B) =exp(a)Up(8), a=-a, az=0alli, (9.94)

and the group invariant integration is then assumed to be normalised such that, for U as

n (9.94),
douny(U(a, 8)) ~» ] d*ay 1‘[ dg;, a~0, 0<B;<2r. (9.95)

1<i<j<n

With these assumptions

/U( Qv (U) FUXU™) = (2w)"1£};[snfd2aij 52 (asj(Aj = A1) - (9.96)
Since
2 _ 2
52(\z) = W(S (2), (9.97)
this gives
A(X) = (2;)n mgsn(xi -)j)%= (gi)n A2, (9.98)

The result for U(n) invariant integration over hermitian matrices becomes

fd”QX f()():mfc1"2)mE (X)A(X) f(X)

GON f "X AN F(N), (9.99)
- nl(2m)n
where we may use (9.53) for Vi;(,).
For a Gaussian function
1,2
f AX et (X?) _ 2%n(f)2 . tr(X?) = ZX“ 2 3 |Xy = Z)\2 (9.100)
K

1<i<j<n

Using (9.53) this defines a normalised probability measure for the eigenvalues for a Gaussian

ensemble of hermitian matrices
%77/2 n R 2
d,UJ(A)hermitian matrices = ~ 1. H A A) € 2,{22 . (9101)
(27)3" T2y il it

Extending this to quaternionic hermitian n x n matrices the relevant integrals are

[ X f(X), X=X, d" VX =T[dxs [] d*Xy, (9.102)

i=1 1<i<j<n
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where X is defined by (1.114) and integration over quaternions is given by (9.56). f is now
assumed to satisfy
f(X)=f(MXM™),  MeU(nH). (9.103)

Such quaternionic matrices may be diagonalised so that, for a suitable M € U(n,H),
MXM™'t=A, Xi= N\ (9.104)

Using the correspondence with 2n x 2n complex matrices provided by (1.115) and (1.79),
when M - M e USp(2n,C) and X — X where

x=xt,  x=-gxtJ. (9.105)

The eigenvalues of X must then be £);, i = 1,...n, and (9.104) is equivalent to the matrix
theorem that the 2n x 2n antisymmetric matrix X'J may be reduced to a canonical form in
terms of {\;},

0 A1 0

-A1 0
0 0 X2

2 0 for MeU(2n). (9.106)

0 A
-An O

MxJMT =

In (9.104) the subgroup of U (n, H) leaving A invariant is formed by quaternionic matrices

q 0 ... O
0 z
Mo()=|: ® . i lal=1, (9.107)
0 ....... Gn
giving
H=~U(1,H)". (9.108)

As before W = S,, formed by {R,} c U(n,H) which permute the diagonal elements in A.
The gauge fixing condition restricting X to diagonal form is now

F(X)= [] o*(Xy). (9.109)

1<i<j<n
In this case we may write for arbitrary M € U(n,H),
M(a,q) =exp(a)My(q), a=-a, az;=0alli, (9.110)
and the group invariant integration is then assumed to be normalised such that, for M as

in (9.110),

de(n’H)(M(a,q)) ~ H d4ozij H d4q2- (|gs| - 1), ar~0. (9.111)

1<i<j<n i=1

With these assumptions and using (9.64)

[U(n,HglpU(WH)(M) FMXM) = )" ] [d4aij 0 ai(A\j-N)).  (9.112)

1<i<j<n
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In this case 1

A(X):W [T v-X2)* = G 2)n A2, (9.113)

1<i<j<n

The result for U(n,H) invariant integration over quaternion hermitian matrices becomes
n(2n-1) VSP(") n?
[ e px) = 2E [ 4K FOOAX) F(X)

- M/du AN N, (9.114)

n! (2m2)"
where we may use (9.65) for Vg, ().

For the Gaussian integral

1
f 4= x mprtr(X?) _ 2%”(5)2n(2n Y tr(X?2) = ZXM +2 3 Xy = Z AZ.
K 1<i<j<n
(9.115)
Using (9.65) we therefore obtain a normalised probability measure for the eigenvalues for a

Gaussian ensemble of hermitian quaternionic matrices

ln(2n-1) n

2\3" K2 1,
d;u()‘)hermitian quaternionic matrices = (;) H dA; A(A) e 2 ZiX . (9116)

iz (20)! i

9.2.1 Large n Limits

The results for the eigenvalue measure du(\), given by (9.87), (9.101) and (9.116) for a
Gaussian distribution of real symmetric and hermitian complex and quaternion matrices,
can be simplified significantly in a limit when n is large. In each case the distribution has
the form

1
dp(N) = Npd® X eV 0wy = 5" YA =56 Y Wi =Nl (9.117)

1,5,0#]
where 5 =1,2,4 and we may order the the eigenvalues so that

M <A< <\ (9.118)

For a minimum W (\) is stationary when

(9.119)

Ai — )\

J#l

In the large n limit we may approximate A; by a smooth function,

i = Az), x:%, fj: [d:z nfd)\p()\) p()\)——>0, (9.120)

i=
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where p()) determines the eigenvalue distribution and is normalised since

fd/\ p(\) = foldx - 1. (9.121)

As n — oo the distribution is dominated by A(x) such that W () is close to its minimum.
The minimum is determined by (9.119) or, taking the large n limit,

K 1
%/\:Pf du p(u)m, (9.122)

where P denotes that the principal part prescription is used for the singularity in the integral
at u= M.

(9.122) is an integral equation for p. To solve this we define the function

R 1 1
F(z)= f dp p(p) ~— as z-—o00, (9.123)
-R Z—u  z
using (9.121) and assuming
p(p)>0, |ul<R,  p(p)=0, |ul>R. (9.124)

F(z) is analytic in z save for a cut along the real axis from —R to R. The integral equation
requires
Fu+ie) =%M=Fi7r,0(,u), /< R. (9.125)
n

Requiring F(z) = O(z7!) for large z this has the unique solution

F(z) = %(z—\/zQ—R2). (9.126)

The large z condition in (9.123) requires

2
g2 (9.127)
K

This then gives

p(N) = 77%2 VRZ-. (9.128)

This is Wigner’s semi-circle distribution and is relevant for nuclear energy levels.

9.3 Integrals over Compact Matrix Groups

Related to the discussion of integrals over group invariant functions of symmetric or her-
mitian matrices there is a corresponding treatment for integrals over functions of matrices
belonging to the fundamental representation for SO(n), U(n) or Sp(n). For simplicity we
consider the unitary case first.
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For matrices U € U(n) the essential integral to be considered is then defined in terms of
the n?-dimensional group invariant measure by

o doun ) F©). (9.129)

where

f(U)=f(VUV™Y)  forall VeU(n). (9.130)
Just as for hermitian matrices U can be diagonalised so that
VUV =Uy(6), 0=(01,...,0,), (9.131)

where U is defined in (9.91). For 6; all different V' is arbitrary up to V' ~ VUy(f), for any
B=(P1,-..,0n) so that the associated stability group H = U(1)*". The remaining discrete
symmetry group in this case is then

Wy ny = Sn, (9.132)
since, for any permutation o € S, there is a R, € O(n) such that

RoUy()Rs ™ =Uo(0s), 0o = (O5(1)s---»00(n))- (9.133)

Thus we use the gauge fixing condition

FU)y= ] &*Uy). (9.134)

1<i<j<n

Using the same results as given in (9.94) and (9.95) we then get

fU Jou (V) FVUVT) = ) T] f A2a; 02 (0 (e - %)), (9.135)

1<i<j<n

so that, using (9.97),

1 0, i0;2 1 1 2
A(U) = L . 2sin (0 - 0,
W) =Gy JL 1V =M=y 11 (2sinz(6:-05)
C_ L A A 1
e MDA, (9.136)

with the definition (9.83). The basic formula (9.26) then gives an integration measure over
the 6;’s

1 n 2
d 0)=——— []4d6; 2sin (6, -0,))", 0<6;<2r. 9.137
'UU(n)( ) n! (2m)" g 1siljjsn( Sln?( j)) " ( )

By restricting f(U) =1 in (9.129) it is clear that this integration measure is normalised,
J dug(ny(0) = 1, since Viy(,,y may be factored from both sides.

To reduce to SU(n) we let 6; = 6 + 0;,i=1,....n-1, 0, =6 - Yot 0;, where now

A~

0<6; <2rand 0 < 0 < 27/n and also []}L;d#; = ndd ]'[I-L:_ll df;. The 6 integral may
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then be factored off, corresponding to the decomposition U(n) ~ SU(n) x U(1)/Zy,, or
equivalently 6,, is no longer an independent variable but determined by >, 6; = 0. For any
R, if det R, = —1 we may define R, = ™R, and otherwise R, = R, so that {RU} c SU(n)
and also R,Up(0)Rs! = Up(6,). Hence, as in (9.132), we still have

WSU(n) ~ Sn . (9.138)

Restricting (9.137) to SU(n) we then obtain

1 n—1 . 9 n—1
disu(ny(0) = — 75—y [1d6; T (2sin3(6:-6,))", O,=- 0;. (9.139)
n! (2m)" i diGen i1
For real orthogonal matrices in a similar fashion
fs odsouo(B) F(R),— f(R) = F(SRS™Y) forall SeSO(n). (9.140)

In this case it is necessary to distinguish between even and odd n. For any R € SO(2n) it
can be transformed to

r(61) 0 ... O
SRS™ = Ry(h) = 0 r(62) L], Seso@n), (9.141)
0 ... r(6y)

where Ry(6) is written as a n x n matrix of 2 x 2 blocks with

r(0) = ( o8, sn) (9.142)

—sinf cosf

In (9.141) S ~ SRo(p), for arbitrary = (B1,...,8n), so that the stability group for Ry(6)
is then SO(2)*". The discrete group defined by 2n x 2n matrices {S} € O(2n) such that
SRy(0)S™ = Ro(0") is Sy, x Zg*", with the permutation group S,, formed by {R, x 13} and
Z5*™ generated by

cO(2n), i=1,...,n, RZ =19, (9.143)

since o37(0) o3 = r(2m—0), for o3 = (§ 9 ). Restricting to the subgroup formed my matrices
with determinant one

Wsoan) = (Sn x Z5™) | Zs . (9.144)

Writing R € SO(2n) in terms of 2x 2 blocks R;j, i,j = 1,...n, the gauge fixing condition
is then taken as
F(R)= T 'Ry, (9.145)

1<i<j<n
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with the definitions
61 (A) =5(a)s(b)6(c)é(d), d'A=dadbdedd  for  A=(%}). (9.146)

For a general rotation S € SO(2n) we may write

S=e5y(8), AT=-4,  A;=0 alli, (9.147)

and then .
dpSO(Zn)(S) B H d4Aij H dﬁz for A~0. (9.148)

1<i<j<n i=1

Using (9.148) is then sufficient to obtain

fs o500 () F(SBo(@)S™) = (2m)" ] f d*Ai; 5% (Air(0;) -1 (6:) Asj) . (9.149)

1<i<j<n

With
1

(AT(G)_T(Q )4) = 4(cosf — cos§')?

5 (A), (9.150)

we then get for SO(2n)

1 1
@y lgggn(Q(cosﬁ —cosf; )) (2 B (

where A is defined by (9.83).

A(R) = A(2cos 9)) (9.151)

Combining the ingredients the measure for integration reduces in the SO(2n) case to
an integral over the n 6;’s given by

dpssoen (8) = 5 ln' oy 12[ i (A(2cos0)). (9.152)

For SO(2n+1) (9.141) may be modified, by introducing one additional row and column,
to

?”(01) 0 R 0 o
0 r(62) :
SRS =Ry(0)=| : i, Seso@n+1), (9.153)
0 r(0,) 0
0 e 1

1o oo 0 o
: T 1, :
Ri=i| | 71, L [eso@n+1), i=1,...n, (9.154)
0 1, o
O e e -1




and in a similar fashion, for any permutation o € S, there is a R, € SO(2n + 1), with the
matrix R, having 1, -1 in the bottom right hand corner according to whether o is even,odd,
such that Ry Ro(8)R, ' = Ro(6,). Hence

Wso(2ns+1) = Snx Zg™" . (9.155)

In this case R € SO(2n+1) is expressible in terms of 2 x 2 blocks R;j, 4,7 =1,...n,2x1
blocks R;,+1 and also 1 x 2 blocks R,,+1; for ¢ =1,...n. The gauge fixing condition is now

f(R) = H 64(RU) H62(Rzn+1) (9.156)

1<i<j<n
with 62( %) = 6(a) §(b), similarly to (9.146). Expressing S € SO(2n+1) in the same form as
(9.147) we now have

dpSO(2n+1)(S) H d4A’L] H d? Aini1 H dg; for A=~0, (9'157)

1<i<j<n

so that
dp S) F(SRy(6)S™
[90(2 1) S()(2n+1)( ) ( 0( ) )

- TT [ day 6 (Ayr(8;) - (6 A, l‘I J @A (12 = (8) Airen)

1<i<j<n
(9.158)
In the SO(2n + 1) case this implies
1 . n
A(R) = —— (A(2c0s6))* [ (25in 16,)°, (9.159)
(2m)" i=1
and in consequence
1 - . 2 4 2
dpeso(2n+1)(0) = [1d6; (2sin36;)" (A(2cos6))". (9.160)

2nnl (2m)" 53

The remaining case to consider is for integrals over M € Sp(n) ~ U(n,H) of the form
[S sy (M) JOD), - F(M) = F(NMNT) forall NeSp(n). (9.161)

By a suitable transformation the quaternion matrix M can be reduced to the diagonal form

e L. 0
) 0 e :
NMN™ =My(0) =] . . N e Sp(n), (9.162)
0 i0n
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As before N ~ NMy(53) so the stability group is U(1)*". The remaining discrete group
generated by R,1¢€ Sp(n), for o0 €S, and 1 the unit quaternion, and also by

eSp(n), i=1,...,n. (9.163)

In this case N? = No(B), with e’ = -1, €% =1, j # i, so that N; corresponds to a Zy
symmetry. Hence for Sp(n) we have

WSp(n) ~ Sn X ZQXH . (9.164)
For the Sp(n) case we take
F(M)= T] 64 (M) I1 6% (My;) (9.165)
1<i<j<n i=1

where, for any quaternion ¢, 6*(q) is defined as in (9.58) and also here
6%(q) = 6(u)d(v) for g=z+iy+ju+kv. (9.166)

Writing then, for any N € Sp(n),

NZGQM()(,B), Qi =—djiEH, E aiizjuiJrkvi, (9167)
we have
dpspmy(N) ~  [] d*a;; Hd Qi quﬁZ for ax0, (9.168)
1<i<j<n
so that

Sy B2 (N) F(N Mo ()N )

=(27)" H fd4az] ozzj 05 _ ¢i0 v Hfdga“ ay; €% — et a”). (9.169)

1<i<j<n
For this case we may use

1

a( 0 i0' Y\ _ 4
0 (ae c a) 4(cos€ - cos')? o (a) ’
20 00 _ i0 ) _ 2 _
) (oze e a) e 9(5 (a ) for a=ju+kv, (9.170)
to obtain .
A(M) = ——— (A(2cos0))? T] (25in6;)°. (9.171)
(27T) i=1
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Hence

dptgp(m) (6) = 2nn|(2w) f[ 0; (25in6;)” (A(2c0s0))”. (9.172)

As special cases we have djgy1)(0) = dugy(2)(0), dusos)(0) = Zd/LSp(l)(%Q) and also,
from SO(4) = (Sp(1) x Sp(1))/Z2, dpso(ay (61 = 02,01 +62) = 2dpugy1)(01) dpusp(ry (62) with,
from 50(5) ~ Sp(?)/ZQ, d,u,so(5)(91 - 92,91 + 92) = 2d,usp(2)(91,02), and, from SO(G) ~
SU(4)/Z2, duso(ey (02 + 03,05 + 01,601 + 02) = 2d gy (a) (61, 02,03).

9.4 Integration over a Gauge Field and Gauge Fixing

An example where the reduction of a functional integral over a gauge field A € A can be
reduced to A/G, where G is a the gauge group, in an explicit fashion arises in just one
dimension. We then consider a gauge field A(t) with the gauge transformation, following
(8.26),

At) — A = g()AWB)g(H) " - Bg(t) (), (9.173)
where here we take
A =A@ eu(n),  gt)eU(n). (9.174)
The essential functional integral has the form
[ say, ran - ), (9.175)

where we restrict to ¢t € S' by requiring the fields to satisfy the periodicity conditions

A =A(t+B),  g(t) = g(t+B). (9.176)

In one dimension there are no local gauge the discussion in 8.3 and the periodicity
requirement (9.176), the gauge invariant function f in (9.175) should have the form

f(A) =fU) where  f(U)=f(gUg™") forall geU(n). (9.177)

In particular
Ps(U) =tr(U), (9.178)

is gauge invariant, being just the Wilson loop for the circle S! arising from imposing peri-
odicity in t. Pg(U) is a Polyakov™ loop.

The general discussion for finite group invariant integrals can be directly applied to the
functional integral (9.175). It is necessary to choose a convenient gauge fixing condition.
For any A(t) there is a gauge transformation g(t) such that

AW =ix, xt=Xx. (9.179)
In consequence we may choose a gauge condition 9;A(t) = 0 or equivalently take
F[A]=0d"[A], (9.180)

59 Alexander Markovich Polyakov, 1945-, Russian.
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where §'[ A] is a functional §-function, §" denoting the exclusion of constant modes. For a
general Fourier expansion on S!

At) =iX + Y A ™8 XT=x, Af=-A,), (9.181)

n*0

where X is a hermitian and A,, are complex n x n matrices, then

"TA] = TT N 827 (An) - (9.182)

n>0

N, is a normalisation factor which is chosen later. With the expansion (9.181) the functional
integral can also be defined by taking

=d™'x H —d2” Ay . (9.183)

n>0

The integral (9.9) defining the Faddeev Popov determinant then becomes
/;du(g) §'[A9] where A(t) = (iX)9® for some g(t), (9.184)

and where du(g) is the invariant measure for the gauge group G. From (9.173) for an
infinitesimal gauge transformation

(GX)9D =i X +i[ A1), X]-0A(@)  for g(t)~»L+A1), AB)T=-A#). (9.185)

If
g@®) = go(L+ A1) for AE)~0, At)= D A28\ =-a,, (9.186)

n=0

then we may take

du(g) = doye (g0) AN, d[A] = TTd* A, (9.187)

n>0

Hence from (9.184) we define

f du(g) §[(iX)?] = A[g?) (9.188)

where

/
A—fd 1 8'[i[\ X1 - 0]

-TIN. fdQ” A 62 (27;”A [X,)\n])

n>0
on?
/dQ")\ 52 ( ﬁ S[X.\ ]) for Nn:(i) : (9.189)
n>0 2mn
which gives )
— i ad
A(X) = g(det (12 + 7 X )) . (9.190)
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The essential functional integral in (9.175) then reduces to just an integral over hermitian
matrices X,

fd 1 £(A) = fd"XA(X)f(zX) (9.191)
U(n

There is a remaining invariance under X — gX g ! for constant g € U(n). This may be
used to diagonalise X so that gX ¢! = A where A is the diagonal matrix in terms of the

eigenvalues \i,..., Ay, as in (9.68). In terms of these
cigenvalues{ X*} = \; - \;, i,5=1,...,n. (9.192)
Hence 5 0
Ai— A
det (1,2 + b x*)= T (1- Qi)Y (9.193)
2mn 1<i<j<n dmn?
Using

62 sin
H(l— : 2)=—0 : (9.194)
we get,

AX)= ]I

1<i<j<n

. 2
(M) . (9.195)

(A -8

As a consequence of (9.99) we further express (9.191) in terms of an integral over the
eigenvalues {\;} using

1 2
"X - /d”)\ (A= A)2. 9.196
Vo) f n! (277)” L1 G (9:199)

1<i<j<n

Using this in conjunction (9.195) in (9.191) gives finally
1 )
J AL FA) = 55 [ Aoy (53 S8 (9.197)

with the measure for integration over U(n) determined by (9.137).

Although the freedom of constant gauge transformations has been used in transforming
X — A there is also a residual gauge freedom given by

j 2
g(t) = ™Y po0,x1,22,... = AYD-A- % 1. (9.198)
For this to be a symmetry for f(iX) = f(¢A) we must have
FGX) = f(eY), (9.199)

where f is defined in terms of the line integral over ¢ in (9.177). The final result (9.197)
shows that the functional integral over A(t) reduces after gauge fixing just to invariant
integration over the unitary matrix U.
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